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Abstract 

Background:  Quaternions have emerged as powerful tools in higher-dimensional quantum mechanics as they 
provide homogeneous four-dimensional structure in quantum field theories, offer compact representations, and 
incorporate spin naturally. Quantum field theories then lead to the unification of fundamental interactions so the 
use of quaternion becomes necessary when we are dealing with higher-dimensional theories. On the other hand, 
supersymmetry is the theory of bosons and fermions and is an essential constituent of grand unified theories. The use 
of quaternion in supersymmetric field theories provides an excellent framework for higher-dimensional unification 
theories.

Result:  A complete theory for supersymmetric quaternionic quantum mechanics has been constructed for N = 1, 
2, 4 supersymmetry in terms of one, two, and four supercharges and Hamiltonians, respectively. It has been shown 
that N = 4 SUSY is the quaternionic extension of the N = 2 complex SUSY and N = 1 real SUSY; also spin is the natural 
outcome of using quaternion units. Pauli and Dirac Hamiltonian and their relationship have also been obtained in 
quaternion space. It has been shown that quaternionic quantum mechanics are superior to ordinary and complex 
quantum mechanics because in the quaternion framework we do not need three different theories for N = 1,2,4 SQM 
but a single theory only.

Conclusions:  It has been concluded that N = 1 real SUSY is equal to N = 2 complex SUSY which in turn is equal 
to N = 4 quaternion SUSY so one can arrive at higher-dimensional quantum field theories starting from lower-
dimensional quantum theories. Higher-dimensional quaternion field theories are suitable for nonphotonic light cone 
particles which are not allowed in complex QFT, also noncommutative nature of quaternion gives an extra degree of 
freedom and may provide the possibility of some new particle, dark matter, or new phenomenon. Though quater-
nions provide an excellent framework in higher-dimensional field theories, there are certain challenges due to their 
noncommutativity as calculations become tedious where large terms are involved. Keeping in view the noble features 
of quaternion, we expect some development to get a better understanding of N = 8 supergravity, maximal supergrav-
ity (D = 11 − n), and maximal supersymmetry theories (N = 10) in terms of quaternion operators.
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1 � Background
In recent years, quaternions have emerged as powerful 
tools in higher-dimensional quantum mechanics as they 
provide homogeneous four-dimensional structures in 

relativistic quantum mechanics and provide representa-
tions in terms of compact notations [1–3]. Also, spin is 
a natural outcome of using quaternion as they are rep-
resented in terms of Pauli spin matrices [4, 5] so their 
use becomes necessary while dealing with nonzero spin 
particles. Quaternion product is noncommutative so we 
get an extra degree of freedom in expressions which can 
lead to some new phenomenon, particles, and explana-
tions of some undefined questions in particle physics [6, 
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7]. Higher-dimensional quaternionic quantum field theo-
ries are suitable for nonphotonic light cone particles and 
massive Higgs bosons which are not allowed in complex 
field theories [7].

Quaternions are hypercomplex numbers that are simi-
lar to complex numbers in values but noncommutative. 
Quaternions were extensively used in quantum mechan-
ics by S.L. Adler [8, 9]. Recently, quaternions are gaining 
much popularity since their use in relativistic quantum 
mechanics by S. Giardino [10], B.C. Chanyal [11] and in 
quantum field theory was used by B.C. Chanyal [12], S.D. 
Leo [13, 14], S. Ulrich [15] and H. Sobhani et al. [16–18].

Supersymmetric theories were first appeared in the 
field theories and are exact symmetric to explain bosonic 
and fermionic fields in a single theory and serve as the 
basic outline to unite all fundamental interactions [16]. 
Supersymmetry is the theory of bosons and fermions 
and is an essential constituent of grand unified theories 
of four fundamental interactions [19, 20]. Quaternion in 
SUSY quantum mechanics was first used by A.J Davis 
[21]. Several authors studied higher-dimensional SUSY 
quantum mechanics in detail [22–27].

Keeping in view the utility of quaternion and super-
symmetry in quantum mechanics, we have tried to con-
struct a single theory in terms of quaternionic operators 
for N = 1,2,4 supersymmetric quantum mechanics. N = 1 
SUSY quantum mechanics is explained in terms of one 
supercharge. We have obtained expressions for super-
charges, Pauli Hamiltonian, and Dirac Hamiltonian. 
N = 2 SUSY quaternionic quantum mechanics has been 
constructed in terms of two complex supercharges and 
Hamiltonians; it contains an additional spin 1/2 degree 
of freedom [21]. We also observed that there should be a 
vanishing ground state for unbroken SUSY. By replacing 
complex numbers with quaternion units, N = 2 SUSY is 
extended to N = 4 SUSY and four supersymmetric gen-
erators have been constructed as discussed by Junker 
[26] Hull [27]. It is concluded that quaternionic quantum 
mechanics.

are superior to ordinary and complex quantum 
mechanics as we need only a single theory instead of 
three different theories for N = 1,2,4 SQM and is proved 
as the best theory for higher-dimensional quantum 
mechanics as it automatically provides a four-dimen-
sional structure and spin to it.

2 � Method
2.1 � N = 1, 2, 4 supersymmetric quantum mechanics
Let us analyze a quantum system, defined by a Hamil-
tonian Ĥ  (Hermitian in nature) acting on some Hilbert 
space which is constructed in terms of N self-adjoint 
operators M̂i = M̂†

i  . Such quantum system is called 

supersymmetric provided the following anti-commuta-
tion relation is valid.

where curly bracket represents anticommuting relation. 
The self-adjoint operators M̂i & M̂j  are called super-
charges, and the Hamiltonian Ĥ is said to be SUSY 
Hamiltonian.

2.2 � N = 1 quaternionic supersymmetric quantum 
mechanics

N = 1 SQM is defined in terms of only one supercharge 
called a generator of N = 1 SUSY. One-dimensional 
supersymmetric quantum mechanics is then described 
by the graded algebra and can be expressed as

Here 
∣∣∣Ĥ

∣∣∣ψ > is the corresponding eigenstate. We may 
extend N = 1 quaternionic SUSY to the relativistic quan-
tum mechanics where a system [22] is defined by a Pauli 
Hamiltonian for a spin 1/2 particle in an external mag-
netic field. Let us consider two quaternion gauge poten-
tials �Aµ(x, t) and �Bµ(x, t) . The two external quaternion 
gauge magnetic fields are given as

where �Aµ(x, t) and �Bµ(x, t)  are quaternion potentials 
(μ = 0, 1, 2, 3) and defined as

Here A0 and B0 are the scalar part of electric and mag-
netic field, respectively, and �Al , �Bl are vector part of the 
corresponding electric and magnetic field. We may intro-
duce self-adjoint supercharge ( M̂D ) in electromagnetic 
field system in terms of momentum ( �pl ), electric ( �Al) , 
and magnetic field ( �Bl ), i.e.,

in the above equation, if we substitute the scalar part 
of quaternion i. e. el → e0 → 1 , we get only one super-
charge which is the generator of N = 1 SUSY; henceforth, 
we get Pauli Hamiltonian [21]

(1)
{
M̂i, M̂j

}
= Ĥδij ,

(
i, j = 0, 1, 2, 3, 4, . . . . . . ,N

)

(2)

〈
ψ

∣∣∣Ĥ
∣∣∣ψ

〉
=

〈
ψ

∣∣∣M̂†
M̂

∣∣∣ψ
〉
+

〈
ψ

∣∣∣M̂M̂
†

∣∣∣ψ
〉

=
∣∣∣M̂

∣∣∣ψ > |2 +
∣∣∣M̂†

∣∣∣ψ > |2 ≥ 0

(3)C = �∇ × �Aµ(x, t) and C ′ = �∇ × �Bµ(x, t)

(4)

�Aµ(x, t) = A0 +
3∑

l=1

el �Al and �Bµ(x, t) = B0 +
3∑

l=1

el �Bl

(5)M̂D = iel

(
�pl − iel �Al + iel �Bl

)
= M̂†

D

(6)ĤP = 2M̂2
D = 2

{
iel

(
�pl − iel �Al + iel �Bl

)}2
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which is described as the Pauli Hamiltonian for a 
spin − 1/2 particles. Accordingly, we may write Dirac 
Hamiltonian ĤD as

; similarly Hamiltonian for N = 1 SUSY is obtained by 
substituting el → e0 → 1 ; here we can replace Dirac 
matrices ( αl ,β ) with quaternions ( el ) as

Squaring the Dirac Hamiltonian, we get

where ĤP is Pauli’s Hamiltonian; we also get the relation-
ship for Dirac and Pauli Hamiltonian

2.3 � N = 2 quaternionic supersymmetric quantum 
mechanics

N = 2 SUSY was discussed by Witten [16] as a simple 
model, which consists of an additional spin − 1/2 degree 
of freedom, and accordingly, we may write two super-
charges M̂1&M̂2  in terms of quaternion units e1 and e2 
and potential ∅(x) as follows

Then the Hamiltonian is given by

(7)

ĤD =
3�

l=1

αl

�
�pl − iel �Al + iel �Bl

�
+ βm

=



m iel

�
�pl − iel �Al + iel �Bl

�

iel

�
�pl − iel �Al + iel �Bl

�
−m





=
�

m M̂†
D

M̂D −m

�

(8)αl =
[
0 iel
iel 0

]
and β =

[
I 0

0 −I

]

(9)

Ĥ
2
D =

[
M̂DM̂

†
D
+m

2 0

0 M̂DM̂
†
D
+m

2

]

=

[
M̂

2
D
+m

2 0

0 M̂
2
D
+m

2

]

=

[
ĤP

2
+m

2 0

0
ĤP

2
+m

2

]

(10)

[
M̂D, ĤD

]
= 0,

[
M̂D, ĤP

]
= 0,

[
M̂D, M̂D

]
= ĤP

(11)
M̂1 =

1√
2
(p× ie1 + ∅(x)× ie2) & M̂2

= 1√
2
(p× ie2 − ∅(x)× ie1)

(12)Ĥ = 2M̂2
1 = 2M̂2

2 = p2+∅2−2e3p∅ = p2+∅2−2iσ3p
(
−d

/
dx

)
∅ = p2+∅2−2σ3∅′

here σ3  is the Pauli spin matrix related to the quaternion 
unit as σ3 = ie3 . Here we can see that spin is the natu-
ral outcome of using quaternion units. Now Hamiltonian 
can be written in terms of super partner Hamiltonians 
Ĥ+ and Ĥ− as

For N = 2 SUSY, two complex supercharges M̂1 & M̂2 
are formed by substituting quaternion units by com-
plex unit—i and Hamiltonian Ĥ satisfying the following 
relations

Let the two complex supercharges are given by

where i is a complex quantity and belongs to c (1, i) space. 
These supercharge M̂, M̂† and Hamiltonian Ĥ should sat-
isfy the SUSY algebra,

Now to satisfy the relation M̂2 = M̂†2 = 0 , the complex 
supercharges are given by nilpotent matrices, which are 
defined as follows

Hence the Hamiltonian becomes

where a& a† are annihilation and creation operators 
defined as

Substituting 2ω = 1  and ωq = U(x), U(x) is real super 
potential; we can write a and a† in the following manner

(13)

Ĥ =
[
Ĥ+ 0

0 Ĥ−

]
=

[
p2 + ∅2 + 2∅′ 0
0 p2 + ∅2 − 2∅′

]

(14)

M̂1M̂2 = −M̂2M̂1 = −1

2

(
ip

2 + i∅2 + p∅
)
& Ĥ = 2M̂

2
1

= 2M̂
2
2 = p

2 + ∅2 − 2ip∅ = p
2 + ∅2 − 2∅′

(15)

M̂ = 1√
2

(
M̂1 + iM̂2

)
& M̂† = 1√

2

(
M̂1 − iM̂2

)

M̂2 = M̂† = 0 & Ĥ =
{
M̂, M̂†

}

(16)M̂ =
[
0 a
0 0

]
& M̂† =

[
0 0

a† 0

]

(17)Ĥ =
{
M̂, M̂†

}
=

[
aa† 0

0 a†a

]

(18)a = 1√
2ω

(−ip+ ωq) & a† = 1√
2ω

(ip+ ωq)
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The supercharges for this case are given by

and the Hamiltonian is given by

Here Ĥ , M̂ , and M̂† satisfy the SUSY algebra given by

where square bracket represents commutation relation 
while curly bracket represents anticommutation relation. 
We consider ψ as a two-component ( ψa & ψb ) spinor 
given by

and necessary condition for SUSY to be a good super-
symmetry that supercharges annihilate the ground state

In terms of energy, the condition for SUSY to be a good 
SUSY is that the ground state energy should be zero. 
Using Eqs. (20) and (23), we get

where U is given by

So that

Let us define the quaternion wave function as two-
component complex spinors

(19)
a = (−ip+ U(x)) = − d

dx
+ U and a

†

= (ip+U(x)) = d

dx
+U

(20)M̂ =
[
0 − d

dx
+U

0 0

]
& M̂† =

[
0 0
d
dx

+U 0

]

(21)

Ĥ =
[
Ĥ+ 0

0 Ĥ−

]
=

[
− d

2

dx2
−U ′ +U2 0

0 − d
2

dx2
+U ′ +U2

]

(22)
[
Ĥ , M̂

]
=

[
Ĥ , M̂†

]
= 0, {̂M, M̂} =

{
M̂†

, M̂†
}
= 0 & Ĥ =

{
M̂, M̂†

}

(23)ψ =
[
ψa

ψb

]

(24)M̂
∣∣∣ψ >= M̂†

∣∣∣ψ >= 0

(25)−ψ ′
b + Uψb = 0 and ψ ′

a +Uψa = 0

U = ψ ′
b

ψb
= −ψ ′

a

ψa
;

(26)
ψb = e

−
x
∫
x0

�U(s).d�S
and ψa = e

−
x
∫
x0

�U(s).d�S
.

2.4 � N = 4 supersymmetric quantum mechanics
According to Hull [22], N = 4 SUSY QM can be formed 
from N = 2 SUSY QM by extending the complex number 
i to three imaginary units, described as quaternion units. 
Thus N = 4 SUSY QM can be obtained by replacing i by �e 
in Eqs. (18) and (19). Then we get

Here we consider U as the quaternionic super poten-
tial by taking only the imaginary part and leaving the real 

part and is defined by

Hence the supercharges for this case are deduced as

if we replace �el → �e0, �e1, �e2, �e3 we obtain 4 supercharges 
for N = 4 SQM called generators of N = 4 SQM.

and the Hamiltonian becomes

Similarly, we get four super-partner Hamiltonians for 
N = 4 SQM by replacing �el → �e0, �e1, �e2, �e3 and satisfy 
the usual SUSY algebra given by Eq.  (22). Equation  (32) 
reduces to the following expression of supercharges on 
using the value of U from Eqs. (30) and (31), i.e.,

Corresponding wave function is given by

(27)ψ =
[
ψa

ψb

]
=

[
ψ+

ψ−

]

(28)a =
(
−�el .�pl +U

)
and a† =

(
−�el .�pl +U

)

(29)U =
3∑

l=1

elwl = e1w1 + e2w2 + e3w3

(30)U † = −
3∑

l=1

elwl = −e1w1 − e2w2 − e3w3

(31)

M̂ =
[
0
(
−�el .�pl + U

)

0 0

]
& M̂† =

[
0 0(
−�el .�pl +U †

)
0

]

(32)Ĥ =
[ (

−�el .�pl + U
)(
−�el .�pl +U

)
0

0
(
−�el .�pl +U

)(
−�el .�pl +U

)
]

(33)

M̂ =
[
0 �el

(
−�pl + wl

)

0 0

]
& M̂† =

[
0 0

−�el
(
�pl − wl

)
0

]

ψ = ψ0 + e1ψ1 + e2ψ2 + e3ψ3
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Or

where ψ+ and ψ− are again two-component spinors cor-
responding to an upper and lower component of Dirac 
spinor in the following manner

where we have used a =
(
−�el .�pl +U

)
 . If we substi-

tute quaternion basis elements el by el = −iσl , so that 
a = −iσl

(
−�pl + wl

)
 , here σl is the Pauli spin matrix. 

Showing that by using quaternionic algebra spin auto-
matically appears in the structure. Hence spin naturally 
occurs in quaternionic quantum mechanics, which is not 
possible in N = 2 supersymmetric quantum mechanics. 
Replacing el = −iσl , we get the following representation 
for Dirac matrices as follows

where

These are the matrices, which have been used by 
Rotelli [20] in formulating the quaternionic Dirac 
equation.

3 � Result
We have formulated N = 1 SUSY quantum mechan-
ics in the presence of electromagnetic field which is 
defined in terms of one supercharge by considering 
only the scalar quaternion part. The relation between 
Pauli and Dirac Hamiltonian has also been obtained, 
which gives the relationship between ordinary and rel-
ativistic quantum mechanics. The self-adjoint super-
charges, Dirac Hamiltonian, and Pauli Hamiltonian 
satisfy SUSY algebra and are consistent with super-
symmetric theory. It has been shown that N = 2 SUSY 
is defined in terms of two complex supercharges and 
consists of an additional spin 1/2 degrees of freedom, 
and accordingly supercharges, corresponding Dirac 
Hamiltonian and Pauli Hamiltonian in terms of quater-
nion units, are discussed. The complex supercharges 
and Hamiltonian are also discussed by replacing qua-
ternion units with complex no (i) and the relation 
between them has been established.

ψ =
�
ψa

ψb

�
=

�
ψ+

ψ−

�
=




ψ0

ψ1

ψ2

ψ3




(34)

ψ+ = ψ0 + e1ψ1 =
[
φ+
0

]
and ψ− = ψ2 − e1ψ3 =

[
0

φ−

]

(35)γl =
[
el 0
0 el

]

(36)γ †
l = −γl , trγl = 0 & γlγk + γkγl = −2δlk

We have also developed a complete theory for N = 4 
SUSY quantum mechanics and constructed the SUSY 
generators in the same manner as discussed by Hull 
[22]. We have obtained four supercharges by tak-
ing scalar and vector parts of the quaternion. We also 
obtained Dirac matrices and their relationships as dis-
cussed by Rotelli [20]. It has been shown that by using 
the quaternion framework we do not need three differ-
ent theories for N = 1,2,4 SQM but a single theory only.

4 � Discussion
We have developed a complete theory for N = 1,2,4 super-
symmetry, and we can develop higher-dimensional theo-
ries from lower-dimensional by using quaternion units; 
also we have obtained a relationship between Pauli (non-
relativistic quantum mechanics) and Dirac Hamiltonian 
(relativistic quantum mechanics) so by using this theory we 
can formulate relativistic theory with the help of nonrela-
tivistic or vice versa. In this theory, we have seen that only 
a single theory is required for N = 1, 2, 4 SQM instead of 
three different theories. We have seen that quaternion rep-
resentation is compact and can provide an excellent frame-
work for higher-dimensional quantum mechanics such 
as N = 8 supergravity, maximal supergravity(D = 11 − n), 
and maximal supersymmetry (N = 10) theories that can 
be developed by taking three quaternions (Euclidean) 
spaces; also spin is the natural outcome of quaternions as 
they can be represented by Pauli spin matrices so quater-
nion should be necessarily used in theories for a particle 
having spin-1/2. Since it contains noncommutative four-
dimensional space, we get an extra degree of freedom in 
different interactions and this can lead to some new phe-
nomena, particles, and explanations of some undefined 
questions in theoretical physics. It has been shown that 
the SUSY will be good supersymmetry unless and until we 
impose the necessary condition showing that ground state 
energy must be vanishing but at the same time it is difficult 
to develop quaternion field theories where several param-
eters are used and it becomes difficult for field theories to 
remain consistent with laws of quantum mechanics due to 
noncommutative nature of quaternion units.

5 � Conclusions
In this article, we have developed a complete theory for 
N = 1, 2, 4 SUSY quantum mechanics. It has been con-
cluded that N = 1 real SUSY is equal to N = 2 complex 
SUSY which in turn is equal to N = 4 quaternion SUSY 
Q. M. The relationship between nonrelativistic and rela-
tivistic quantum mechanics has also been used in terms 
of Pauli and Dirac’s Hamiltonians using quaternion 
operators. With the help of this article, one can arrive at 
higher-dimensional quantum field theories starting from 
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lower-dimensional quantum theories. Higher-dimen-
sional quaternion field theories are suitable for nonpho-
tonic light cone particles and massive particles which are 
not allowed in complex quantum field theories; also non-
commutative nature of quaternion gives an extra degree 
of freedom and may provide the possibility of some new 
particle, dark matter, or new phenomenon.

Though quaternions provide an excellent framework 
for higher-dimensional quantum field theories due to 
their uniqueness in providing four-component homo-
geneous space–time, compact notations, and spin 
inheritance, there are certain challenges due to their 
four-component structure and noncommutativity as cal-
culations become tedious where large terms are included 
but this problem can be overcome by developing pro-
gramming techniques.

Keeping in view the Nobel features of quaternions in 
higher-dimensional field theories, we expect some devel-
opment to get a better understanding of N = 8 super-
gravity, maximal supergravity(D = 11 − n), and maximal 
supersymmetry theories (N = 10) in terms of quaternion 
operators.
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quantum mechanics.
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