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Computational and pharmacokinetics 
studies of 1,3‑dimethylbenzimidazolinone 
analogues of new proposed agent 
against Alzheimer’s disease
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Abstract 

Background:  Alzheimer’s disease (AD) is a multifactorial disorder that gradually destroys wisdom and memory skills. 
Currently, this disease can only be treated palliatively. However, the molecular mechanisms underlying this condition 
remain elusive. Therefore, these treatments are inadequate. Current medications can only increase patient warn-
ing signs. Chemical structures were drawn using Chemsketch software. Spartan’14 software was used to optimize 
the structures using density functional theory (DFT). The PaDEL software was used to generate the descriptors. The 
genetic function algorithm (GFA) and multi-linear regression (MLR) approaches were used to generate the QSAR 
model.

Results:  In the present study, we performed a computational investigation, molecular docking, and pharmacoki-
netics analysis of 1,3-dimethylbenzimidazolinone derivatives. The descriptors generated in the model are AATS7i, 
MATS5p, SpMin7_Bhe, and GATS6c. Compounds 13 and 21 have the best binding scores, 11.2 kcal/mol and 10.8 kcal/
mol, respectively, and optimal protein–ligand interactions with AChE. These compounds have brilliant pharmacoki-
netic and physicochemical properties.

Conclusions:  The model was validated and found to have good internal and external assessment parameters: 
R2 = 0.937, R2adj = 0.863, Q2

cv = 0.788, R2test = 0.756, LOF = 0.0268, cR2p = 0.677. In summary, these data suggested that 
compounds 13 and 21 are promising multifunctional agents against AD.
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1 � Background
Alzheimer’s disease (AD) affects modern societies. AD 
is a product of dementia and a serious health problem 
worldwide. Today, the number of people living with 
dementia is estimated at 50.0 million worldwide, and by 
2040, it may increase to 130.0 million, which is respon-
sible for approximately 73% of the cases [1]. In the light 
of these realities, we may expect over 90 million AD 

patients in the next three to four decades [1]. Deposits 
[2, 3], oxidative stress [3, 4], and low levels of acetylcho-
line [4–6] have all been proposed as sources of AD, and 
several drugs have been introduced into the market for 
the treatment of AD, especially those approved by the 
US government. They are six in number. Neuronal death 
cannot be slowed or stopped by any drug. The signs of 
AD have been improved by the introduction of drugs [7]. 
A few drugs include donepezil, galantamine, rivastig-
mine, and memantine [8].

AD remains irredeemable owing to the limited avail-
ability and low efficacy of drugs. Many researchers 
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worldwide have intensified their efforts to find effective 
novel drugs and new biological targets.

To improve the drug improvement process in a more 
cost-efficient manner and to reduce failures in the final 
stage, the engagement of CADD techniques became 
indispensable for the initial stage of the drug discov-
ery process. Valued evidence about the interface pat-
tern between the protein and ligand, as well as the 
binding affinity, is a parameter for rational drug design, 
which provides a knowledge-driven method that will 
provide maximum output. In this study, a structure-
based modelling approach was employed, using the 
3D structure of the protein target for the screening of 
potential modulators, followed by biologically tested syn-
thesized compounds and optimization. The best model 
was selected among the generated models based on sta-
tistical validity and was used for structural optimization 
to enhance potency and identify new chemical com-
pounds in the in silico virtual screening of a large chemi-
cal catalogue [9, 10]. The rationale behind the work is 
Y = A1x1 + A2x2 + A3x3 + B. Y is the activity (pIC50), where 
“A”s and “x”s are regression coefficients for conforming 
nonpartisan variables that represent molecular descrip-
tors of molecules; “A”s correspond to “X”s. the last vari-
able, “B”, is the regression constant.

The present study aimed to use QSAR, molecular dock-
ing simulation, in silico design, and ADMET properties 
to identify new drugs that are efficient against AD.

2 � Methods
2.1 � Data set gathering and activities
The data were obtained from the literature [11] as poten-
tial compounds against Alzheimer’s disease. Twenty-
six derivatives of the compounds were extracted and 
selected for modelling. A list of the compounds is pre-
sented in Table 1. Data are presented as IC50 values (µM). 
The concentration was converted to the PIC50 by taking 
the inverse logarithm of each value. The residual value is 
the difference between the observed and calculated val-
ues, as listed in Table 1. The test set is represented by an 
* sign.

2.2 � Molecular optimization and generation of molecular 
properties

All inhibitory compounds were optimized using the 1.1.4 
version of Spartan software to attain a steady conforma-
tion at minimum energy. Lateral optimization processes 
were achieved with the help of the mechanical force 
field and density functional theory (DFT) [12]. V.2.2.0 
of PaDEL software was used to generate 1800 descrip-
tors, which simply describe the relationship between the 
experimental activity and the molecular structure of each 
molecule.

2.3 � Data normalization, pretreatment, and training 
and test set generation

Each variable influences a good model to generate a 
good model. Therefore, the descriptor values generated 
from PaDEL software V2.20 were normalized using 
Eq.  (1) to give the descriptor an equal chance at the 
inception [13, 14].

where Xmax and Xmin are the maximum and minimum 
values of each descriptor, respectively. Xi is the value for 
each descriptor molecule. Afterwards, the normalized 
data were pretreated with pretreatment software (https://​
dtclab.​webs.​com/​softw​are-​tools) to eliminate redun-
dant molecular properties. The dataset was divided into 
a ratio of 7:3 that is the training and test sets, using the 
algorithm of Kennard and Stone, which was incorporated 
into the DTC lab software. Model and internal validation 
tests were confirmed using the training set. Meanwhile, 
the developed model was performed on a test set [15].

2.4 � Derivation of the model and models and validation
Multi-variant equations (models) were generated 
using the multi-linear regression approach (MLR) and 
genetic function approximation (GFA), and Material 
Studio software V.8.0 was used to confirm the robust-
ness and predictability of the built model.

2.5 � Leverage applicability domain (LAD)
In vividly determining that a compound is an outlier, 
leverage values and standardized residuals are used 
together in what is called a Williams graph to describe 
the LAD of a given model. Influential and outlier mol-
ecules present in the dataset were determined using 
this approach, the leverage (hi) approach is defined in 
Eq.  (2) and was used to define the domain space ± 2.5 
for outlier molecules [15].

where Wi represents the matrix of i in the training set. 
W represents the n × d matrix descriptor for the train-
ing set. WT is the transpose of training set (W) represents 
the transposed matrix and Wi. The warning leverage k* 
defined in Eq.  (3) is the boundary for establishing the 
presence of an influential molecule.

(1)A =
Xi − Xmin

Xmax − Xmin

(2)hi = Wi
(

WTW
)

−1
WT

i

(3)k∗ = 3
(x + 1)

A

https://dtclab.webs.com/software-tools
https://dtclab.webs.com/software-tools
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Table 1  Molecular structures of inhibitory compound

S/N
o Molecular structures

Experimen
tal activity 

PIC50

Calculat
ed 

activity
Residu

al
1

0.9074 0.7266 0.1808

2

0.5832 0.6218

-

0.0386

3

1.4101 1.3564 0.0537

4

0.9987 1.2220

-

0.2234

5

0.7135 0.7276

-

0.0141
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Table 1  (continued)

1.2092 1.1159 0.0933

7

0.4669 0.5519

-

0.0850

8

0.5932 0.7792

-

0.1859

9

0.7782 0.6662 0.1120

10*

0.6778 0.6853

-

0.0075

11

0.9479 0.9215 0.0265

12

1.5807 1.4568 0.1239

6
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Table 1  (continued)

18

0.8239 0.9172

-

0.0933

19

0.2900 0.1465 0.1436

20

0.3768 0.3735 0.0033

14

0.8739 0.7697 0.1042

15*

0.3372 0.3181 0.0192

16*

0.9708 0.9647 0.0061

17

0.0170 0.1953

-

0.1783

13

0.7356 0.8663

-

0.1307
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Table 1  (continued)

22

0.5670 0.4645 0.1025

23

1.0438 0.4949 0.5489

24*

0.4089 0.3314 0.0775

25*

0.2676 0.3321

-

0.0645

21

0.6721 0.4607 0.2114
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where A and x are the total number of training set and 
descriptors present in the built model.

2.6 � Y‑randomization validation and Confirmation 
of the build model

To investigate the robustness of the developed models 
and determine whether the models were the result of 
chance correlations [16, 17],

A Y-randomization test was applied to the final model. 
Here, the activity value is randomly permuted and a new 
QSAR model will be constructed using the optimum 

descriptors in the final models as reported in the litera-
ture [18]. This new model is expected to report R2 and 
Q2 values that are very low for several trials compared 
to those reported by the original models. For clarity, this 
procedure was repeated 100 times. The conditions for 
authenticating both the test and the training set were 
stated and related to the commonly accepted threshold 
value shown in Table 6 for any QSAR model [19, 20] to 
assert the consistency, fitting, stability, strength, and pre-
dictability of the developed models.

Table 1  (continued)

26*

1.3939 0.3204 1.0735

27

Donepezil 0.4089 0.2756 0.1333

Fig. 1  A Protein target (4MOE) and B prepared receptor
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2.7 � Docking studies
2.7.1 � Receptor and ligand preparation
The acetylcholinesterase receptor (4MOE) crystal with a 
low resolution shown in Fig.  1A was downloaded from 
the PDB (www.​rcsb.​org). Using the Visualizer software 
in Discovery Studio, completely imported foreign matter 
such as cofactors and ligands associated with the enzyme 
were removed, and the target protein was saved in the 
PDB format. Next, the target protein saved in PDB for-
mat was imported into PyRx software and converted into 
macromolecules (Fig. 1B). The Spartan software, an opti-
mizing tool, was used to attain the unchanging minimal 
energy of the benzimidazolinone derivative conforma-
tion. The optimized ligands were saved in PDB format, 
recognized by PyRx software, and converted to micro 
molecules (pdbqt).

2.7.2 � Docking of receptor and ligand
PyRx virtual screening software was used to perform 
ligand–receptor interactions and molecular docking of 
benzimidazolinone derivatives. AutoDock Vina and Auto-
Dock 4.2 in PyRx software were used as the docking soft-
ware. Discovery Studio Visualizer software, V 2016, was 
used to create and investigate the docked results [21].

2.8 � Drug‑likeness and prediction of ADMET
Hypothetically derived statistical models are generated by 
in silico approaches for the determination of absorption 
distribution, metabolism excretion, and toxicity (ADMET) 
parameters, which are produced by relating the struc-
tural features of compounds. They have been measured 
in a given assay to their biological response, and are now 
commonly used because of their low resource require-
ments [21]. Therefore, two out of twenty-six compounds 
that showed reasonable binding modes with AChE based 
on similar binding patterns to donepezil and advanced 
negative binding affinity, were subjected to physicochemi-
cal studies. Studies were carried out using the Swiss online 
ADMET web tool [22] to evaluate the model for physico-
chemical properties, pharmacokinetics, drug-likeness, and 
medicinal chemistry friendliness, including in-house profi-
cient methods such as the BOILED-egg, ILOGP, and Bio-
availability Radar of the selected compounds. A diagram of 

WLOGP versus TPSA was plotted to determine the blood–
brain barrier (BBB) and human gastrointestinal absorption 
ability of the compounds [22].

3 � Results
3.1 � QSAR analysis
The best model for predicting the derivatives of 1, 
3-dimethylbenzimidazolinone against AD was successfully 
achieved by adopting the techniques of the computational 
method. A dataset of 26 molecules was split into 20 train-
ing sets and 6 test sets using the method of Ambure and his 
research group [23]. QSAR models were derived using the 
MLR technique from 20 training set compounds, which 
also served as a data set for internal validation tests and the 
validation of the model was conducted on the test set.

3.2 � Constructed model

PIC50 = 11.585405732× AATS7i+ 0.212053417

×MATS5p+ 0.230548471× SpMin7_Bhe

−0.753332018×GATS6c+ 2.057162

Table 2  Descriptors used in the model

Descriptor Type Significance Class Contribution

AATS7s Autocorrelation Average Moreau–Broto autocorrelation-lag 7/weighted by I-state 
autocorrelation descriptor

2D Positive

MATS5p Autocorrelation Moran autocorrelation-lag 5/weighted by polarizabilities 2D Positive

GATS6c Autocorrelation Geary autocorrelation-lag 6/weighted by charges 2D Negative

SpMin7_Bhe Autocorrelation Burden modified eigenvalues descriptors 2D Positive

Table 3  Statistical consideration to validate the descriptors

Descriptor Xj AM P value VIF SE

Hmin 9.362702 4.61 0.002032 3.787947 2.5135

Apol  − 0.01584 0.91 0.160129 2.466789 0.010718

MDEC-23 0.143867 0.09 0.000173 1.156238 0.029033

Weta3.polar 0.690708 2.59 0.118696 2.014014 0.417352

Table 4  Validation of the descriptors using Pearson’s correlation 
matrix

hmin apol MDEC-23 Weta3.polar

hmin 1

apol  − 0.70674 1

MDEC-23  − 0.03149  − 0.22711 1

Weta3.polar  − 0.68057 0.349355 0.016518 1

http://www.rcsb.org
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The experimental activities reported in the literature and 
the theoretical activities calculated for all the anti-Alz-
heimer compounds are presented in Table 1. The residual 
value, which is the difference between the experimental 
and theoretical activities, was observed to be significantly 
low. A low residual value indicates predictability of the 
model. The best descriptors that efficiently described 
the anti-Alzheimer compounds in relation to their 

experimental activities selected by the GFA approach are 
reported in Table 2.

3.3 � Mechanistic information of descriptors in the model 
built

Table  2 provides a comprehensive description of the 
molecular descriptors in the constructed model.

3.4 � Derivation of the model and models and validation
Table 3 shows the strength and direction of influence of 
each descriptor in the constructed model, assessed by 
determining the standard regression coefficient (Xj) and 
mean effect (AE) [24]. The molecular properties high-
lighted in Table  4 have correlation coefficients of 0.6. 
Table 5 presents the validity results of the internal assess-
ment to ensure that the model is reliable. The results con-
firmed the stability and robustness of the model as valid 
because the calculated parameters were all in full agree-
ment with the general validation criteria (Table 5).

Table  6 shows Y-Randomization parameters while 
Table  7 presents the threshold and coefficient of 

Table 5  Validation parameters to confirm the built model

Validation bounds Mathematical expression Threshold Model Comment Ref

Friedman LOF SEE
(

1−
c+d×p

N

)2
Significantly low 0.0268 Passed [24]

R2

1−

[

∑

(Yexp−Ypred)
2

∑

(Yexp−Ytrain)
2

]

R2 > 0.6 0.9062 Passed [24]

R2adj
R2−p(n−1)
n−p−1

R2adj > 0.6 0.863 Passed [24]

Q2
cv 1−

[

∑

(Ypred−Yexp)
2

∑

(Yexp−Ytrain)
2

]

Q2
cv > 0.6 0.788 Passed [24]

Significant regression Yes Passed

F-value (95\%) ∑

(Ypred−Yexp)
2

p

/

∑

(Ypred−Yexp)
2

N−P−1

F(test) > 2.09 3.001 Passed [24]

Min exp error for non-significant 0.0739 Passed [17]

Table 6  Y-randomization parameters test

Model R R2 Q2

Original 0.897695 0.805857 0.617385

Random 1 0.726183 0.527341 0.085324

Random 2 0.424387 0.180104  − 0.64949

Random 3 0.456764 0.208633  − 0.55097

Random 4 0.573928 0.329394  − 0.08597

Random 5 0.685618 0.470072 0.001947

Random 6 0.324353 0.105205  − 0.63431

Random 7 0.344707 0.118823  − 0.70223

Random 8 0.36793 0.135372  − 0.55566

Random 9 0.511569 0.261703  − 0.46915

Random 10 0.448211 0.200893  − 0.40465

Table 7  Random models parameters

Random models parameters Mathematical expression Threshold Model

Average of the correlation coefficient for randomized data Rr R < 0.5 0.4864

Average of determination coefficient for randomized data R
2
r < 0.5 0.2538

Average of leave one out cross-validated determination coefficient for 
randomization data Q2:

Q
2
r < 0.5  − 0.39652

Coefficient for Y-randomization:cR2p R2 ×

(

1−

√

∣

∣

∣
R2 − R

2
r

∣

∣

∣

)

cR2p > 0.6 0.6773
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Y-randomization and Table 8 shows validation results for 
external assessment.

Figures 2 and 3 show graph of calculated activity versus 
observed activity of training set and graph of calculated 
activity versus observed activity of test set, respectively.

The William’s graph shows the domain of applicability 
space (AD) shown in Fig. 4. The leverage value of com-
pounds 10 and 15 was observed to be higher than the 
h* = 0.75 (i.e. warning leverage).

3.5 � Molecular docking studies
The results of the binding energy of the selected benzi-
midazolinone derivatives (compounds 13 and 21) and the 
reference drug to vital target proteins (AChE), implicated 
in the pathogenesis of AD from the molecular docking 
study are, respectively, shown in Figs. 5, 6, and 7.

3.6 � Drug change assessment of selected compounds
We performed in silico ADMET studies on the two mol-
ecules reported in Tables  9 and 10 to supplement the 
results of 3D-QSAR and docking studies. Table  11 dis-
plays the physicochemical properties of compounds 13 
and 21.

The predicted bioactivity scores of the selected com-
pounds obtained Molinspiration software v2018.03 
Chemoinformatics tools are given in Table 12.

Figure  8 exhibits the oral bioavailability graph of the 
two compounds on base of the six features discussed in 
physicochemical properties while Fig.  9 shows points 
located in the BOILED-Egg’s, yolk of molecules 13 and 
21.

4 � Discussion
4.1 � QSAR analysis
The considered model was carefully chosen and reported 
because it is statistically fit with the following assessment 
parameters as compared to other constructed model: R2 
of 0.937, R2

adj of 0.863, Q2
cv of 0.788, R2

test of 0.756, LOF of 
0.0268, and cR2

p of 0.677. The selected model was found to 
have passed the minimum recommended values for vali-
dation of good QSAR models as reported in [24]. The 
details of the descriptors used in the model are listed in 
Table 2.

4.2 � Mechanistic information of descriptors in the model 
built

Table  2 provides a comprehensive description of the 
molecular descriptors of the constructed models. Fur-
thermore, the model showed a positive contribution 
from the descriptors AATS7i, MATS5p, and SpMin7_
Bhe, but a negative contribution from the descriptor 
GATS6c. This means that an increase in the magnitude 
of AATS7i, MATS5p, and SpMin7_Bhe descriptors will 
positively influence the prediction of PIC50 with the 

Table 8  External validation

Validation bounds Mathematical expression Threshold Model Comment

Slope of the plot of observed Activity 
versus calculated activity (k)

�Ycal
�Yobs

0.85 < k < 1.15 1.016 Passed

Slope of the plot of calculated versus 
observed activity values (k’)

�Yobs
�Ycal

0.85 < k < 1.15 0.9210 Passed

/r2o − r′2o /  < 0.3 0.0142 Passed

r2−r′2o
r2

 < 0.1 0.0032 Passed

r2−r′2o
r2

 < 0.1 0.00421 Passed

R2test 1−
∑

(Yext−Yext)
2

∑

(Yext−Y)
2

R2pred > 0.6 0.7883 Passed

Table 9  Pharmacokinetics of compounds 13 and 21

Compound 13 Compound 21

Absorption Caco2 permeability 0.823 1.035

Intestinal absorption 
(human)

91.939 86.102

Skin Permeability  − 2.738  − 2.735

Distribution Volume of distributions 1.411 0.932

Fraction unbound 
(human)

0.183 0.082

BBB permeability  − 0.024  − 0.001

CNS permeability  − 2.192  − 2.168

Metabolism CYP2D6 substrate Yes Yes

CYP3A4 substrate Yes Yes

Excretion Total Clearance 0.623 0.906

Renal OCT2 substrate Yes Yes

Toxicity AMES toxicity Yes Yes

Oral rat acute toxicity 
(LD50)

2.919 2.723

Minnow toxicity  − 0.674 0.257
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negative influence of the GATS6c descriptor. However, 
the AATS7i descriptor has the highest contribution, and 
is the most significant descriptor to be considered in the 
design of new hypothetical compounds. In addition, the 
signs of the regression coefficients for each descriptor 
indicated the direction of influence of the descriptors in 
the models, such that a positive regression coefficient 
associated with a descriptor will augment the activity 
profile of a compound, while the negative coefficient will 
diminish the activity of the compound.

4.3 � Derivation of the model and models and validation
The influence of each descriptor in the constructed 
model was assessed by determining standard regression 
coefficients Xj and AE [24]. Table  3 shows the strength 
and direction, as well as size and symbols for the Xj and 
AE values with which each descriptor influences the 
activity model. The connection between the descriptors 
and the activity of each compound was determined using 
ANOVA. The probability value for each descriptor at the 
95% confidence level was found to be p < 1

20 1, as shown 
in Table  3. Several statistical investigations were con-
ducted on the calculated molecular properties in order to 
assess their validity.

The VIF was evaluated to define the extent of correla-
tion between each descriptor. Generally, a VIF equal to 
1 ≥ 5 signifies the non-existence of inter-correlations pre-
sent in each of descriptor. However, VIF ≥ 10 implies that 
the developed model is unsteady [25]. The VIF for each 
descriptor in the built model, which was found to be less 
than 5, as reported in Table  3, affirms that the descrip-
tors were meaningfully orthogonal to each order because 
there was no inter-correlation between them. Therefore, 
the alternative hypothesis is accepted. This implies a 
direct connection between the biological activity of each 

compound and the descriptors that influence the built 
model.

The molecular properties are highlighted in Table  4 
with correlation coefficients of < ± 0.6 correlation coef-
ficient between them, which indicates that all properties 
were annulled of multicollinearity.

Table 5 shows the validity results of the internal assess-
ment to guarantee that the model is reliable. The results 
confirmed the stability and robustness of the model as 
valid because the calculated parameters were all in full 
agreement with general validation criteria (Table 5).

Figures 2 and 3 show the graphs of calculated activity 
versus observed activity of a training set and a graph of 
calculated activity versus observed activity of a test set, 
respectively. It can be observed that the values of the test 
sets are in close agreement with the training set values.

William’s graph shows the LAD, as shown in Fig. 4. The 
leverage values of compounds 10 and 15 were observed 
to be higher than h* = 0.75 (is, warning leverage). Thus, 
it can be inferred that compounds 10 and 15 are influen-
tial molecules. Moreover, it was also observed that all the 
compounds were within the defined space of 2.5, which 
indicates that no compound is said to be an outlier.

R² = 0.9062
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Fig. 2  Graph of calculated activity versus observed activity of training set
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Fig. 3  Graph of calculated activity versus observed activity of test set
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4.4 � Molecular docking studies
The results of the binding energy of the selected benzi-
midazolinone derivatives (compounds 13 and 21) and the 
reference drug to a vital AChE implicated in the patho-
genesis of AD from the molecular docking study are, 
respectively, shown in Figs. 5, 6, and 7, with the values for 
compounds 13 and 21 having a higher binding affinity for 
AChE than the approved drug. In order to study the bind-
ing mode and selectivity of most active compounds 34 
and 38 with AChE (PDB code: 4MOE), Compound 13 was 
docked into the active site of the AChE domain protein 
with a splendid binding score of − 11.2 kcal/mol involv-
ing the following interactions: conventional hydrogen 
bonding with Val281, Phe75, Met164, and carbon hydro-
gen bond–bonding, Asp76, Pro56, and Leu547Ala320, 
Ile77, and π-Alkyl interactions Trp168, Cys583, Pro594, 
His548 interactions are shown with their 3D interactions 
and surface interactions in Fig.  5. Compound 21 was 
docked into the active site of the AChE domain protein 
with an excellent binding score of 10.9 kcal/mol involving 
the following interactions: conventional hydrogen bond-
ing with Asp211, Pro248, Lys411, and carbon hydrogen 
bonds Arg245, Pro431, Asp430, and π-σ bonding Arg245 
and π-Alkyl interactions Arg245, Pro427, interactions 
shown with its 3D interactions and surface interactions 
are shown in Fig. 6. The reference compound docked into 
the active site of the AChE domain protein with an excel-
lent binding score of 9.4 kcal/mol, involving the following 
interactions: Van der Waals bond Ser216, Carbon Hydro-
gen bond Thr208, Arg245, Glm207, Pi Cation interaction 
Lys411,—interaction Thr244, Amide-bonding Glu215 

and π-Alkyl interactions are shown with their 3D interac-
tions and surface interactions in Fig. 7.

4.5 � Drug change assessment of selected compounds
To supplement the findings of the 3D-QSAR and dock-
ing studies, we conducted in silico ADMET analyses of 
the two molecules listed in Tables  9 and 10. The ability 
to reach targets in bioactive form was assessed using the 
http://​swiss​adme.​ch and http://​biosig.​unime​lb.​edu.​au/​
pkcsm/​web platforms. The technologies of these webs 
employ a reasonable degree of certainty, as false-positive 
results are common in biochemical assays for small mol-
ecules [26].

Table  9 indicates that the absorption characteristics 
of compounds 13 and 21 are capable of oral availability 
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Fig. 4  Standardized residual activity versus observed activity

Table 10  Drug-likeness and medicinal chemistry of compounds 
13 and 21

Compound 13 Compound 21

Lipinski violations 0 0

Ghose violations 0 0

Veber violations 0 0

Egan violations 0 0

Muegge violations 0 0

Lead-likeness violations 1 2

PAINS alerts 0 0

Synthetic accessibility 3.30 2.85

http://swissadme.ch
http://biosig.unimelb.edu.au/pkcsm/web
http://biosig.unimelb.edu.au/pkcsm/web


Page 13 of 19Ajala et al. Beni-Suef Univ J Basic Appl Sci           (2022) 11:53 	

Fig. 5  A and B show the 3D and 2D docking interactions between ligand 13 and receptor, respectively
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Fig. 6  A and B showed the 3D and 2D docking interactions between ligand 21 and receptor, respectively
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owing to optimal cell permeability.  Human intesti-
nal absorption and skin permeability were > 0.8, > 80% 
and < −2.5, respectively, are shown in Table 9.

The volume of distribution of the studied compounds 
was > 0.45 which indicates that the drug is distributed 
in the plasma and describes the extent of drug distribu-
tion. Together with the unbound fraction, which labels 
the portion of free drug in plasma that may extravasate, 

these are two of the most significant pharmacokinetic 
medication parameters. These two parameters have an 
adequate plasma distribution profile, with a fraction of 
the unbound drug between 0 ≥ 0.157. These values show 
that the molecules can circulate well and present an 
important unbound fraction in the plasma, thus becom-
ing available to interact with the pharmacological target. 
The two compounds can penetrate the central nervous 

Fig. 7  Show the 3D and 2D interactions between donepezil and acetylcholinesterase
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system owing to the volume of distribution and fraction 
unbound as indicated in Table 9.

As shown in Table  9, cytochrome P450 (CYP) mol-
ecules are indispensable information sources, this super-
family of isoenzymes is key players [27]. The synergy 
between CYP and P-gp can process small molecules to 
improve the protection of tissues and organisms [28]. 
Estimation of therapeutic molecules that are major iso-
form substrates (CYP2D6, CYP3A4, and CYP1A2) [29, 
30]. Therefore, compounds 13 and 21 were brilliant CYP 
substrates.

Finally, from Table  9, the expected values of the total 
clearance, which measures the efficiency of the body in 
eliminating a drug, indicate that the two compounds have 
a noble renal elimination and are not substrates of the 
renal organic cation transporter 2 (OCT2). In conclusion, 

the compounds passed the AMES and Minnow toxicity 
tests, and  did not present any particular toxicity prob-
lems. The overall analysis of Table 9 highlights that com-
pounds 13 and 21 could be outstanding candidates as 
drugs, or could lead to further studies and manipulations.

Table  10 displays other drug-likeness rules, such as 
Ghose, Veber, Egan, and Muegge violations, and all are 
satisfied by the two molecules that will provide the lead 
like rule with high affinity in high-throughput screens 
that allow for the discovery and exploitation of additional 
interactions in the lead-optimization phase [31–34]. 
Furthermore, the PAINS model, which was designed to 
exclude small molecules that are likely to produce false 
positives in biological assays, paid no attention to com-
pounds 13 and 21.

Table 11  Physicochemical properties of compounds 13 and 21

Compounds MW HBA HBD MlogP Lipinski violations NRB TPSA WLogP

13 426.94 3 1 3.35 0 6 59.27 2.64

21 382.89 3 2 3 0 6 61.02 3.33

Table 12  Bioactivity score of the compounds

Compounds GPCR ligand Ion channel 
modulator

Kinase inhibitor Nuclear receptor 
ligand

Protease 
inhibitor

Enzyme inhibitor

13 0.17  − 0.02 0.06  − 0.39 0.09  − 0.06

21 0.32 0.21 0.26  − 0.44 0.16 0.10

Fig. 8  Radar plots of six drug-likeness parameters used to calculate the oral bioavailability of the studied molecules
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Table  11 lists the physicochemical properties of com-
pounds 13 and 21. The compounds passed Lipinski’s rule 
of five [35]. This further demonstrates the druggability of 
these compounds.

The predicted bioactivity scores of the selected com-
pounds obtained using the Molinspiration software 
v2018.03 Chemoinformatics tools are given in Table 12. 
For the bioactivity score, the G protein coupled recep-
tor (GPCR) ligand was active for both compounds, with 
value of 0.32 and 0.17. In [36], modulators of ion channels 
permit charged particles across cell membranes, and they 
are an important receptor in the healing tract. These two 
compounds were found to be active. All the compounds 
were moderately active as kinase inhibitors. In a previous 
study [37]. Nuclear receptors play a combinatorial role in 
inflammation and immunity. The two compounds were 
active, but compound 13 was more active in terms of 
protease inhibitor bioactivity scores. The two compounds 
were moderately active. The values for enzyme inhibition 
showed that all compounds were highly active. The activ-
ity score profile of the compounds showed that they were 
biologically active and have physiological influence.

Figure  8 illustrates the oral bioavailability graph of 
the two compounds on the basis of  the six features dis-
cussed in physicochemical properties. The compounds 
have shown results within these limits, and these two 

compounds have good physio-chemical profile, a neces-
sary parameter in drugs or clinical trials. The six phys-
icochemical properties are lipophilicity, size, polarity, 
solubility, flexibility, and saturation. Descriptors were 
used on each axis to define physicochemical range [38, 
39]. The pink region was the drug-like consideration of 
the molecule in the radar graph. The compounds obey 
Lipinski’s rule of five. Therefore, the two compounds dis-
played values within the interval known for medicine.

Figure  9 shows points located in the BOILED-Egg’s 
yolk that signified the molecules predicted to passively 
permeate through the blood–brain barrier, whereas the 
egg white was relative to the molecules predicted to be 
passively absorbed by the gastrointestinal tract. Blue dots 
indicate the molecules which emanate from the central 
nervous system with the aid of P-glycoprotein. Overall, 
the plot showed that compounds 13 and 21 have excel-
lent bioavailability.

5 � Conclusions
A well-validated and robust QSAR model was con-
structed for compounds 13 and 21 with anti-Alzheimer 
activity against the AChE protein receptor. The compu-
tational studies, QSAR, docking, and ADMET studies 
proved that these compounds have high binding affinity 
towards the targeted AChE protein receptor and revealed 

Fig. 9  BOILED-egg plot
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the binding energies of these compounds, which showed 
that there is plausibility of inhibiting the AChE protein. 
Overall, the present study acts as evidence to prove that 
these compounds from 1.3-dimethylbenzimidazolinone 
derivatives have the capacity to inhibit the AChE pro-
tein receptor, which also paves the way for the two 
compounds to be screened for AChE protein. In other 
words, this study with the QSAR, docking, and drug-like 
properties in primarily pharmacokinetic studies will be 
positioned as a foundation for carrying out in vitro and 
in vivo studies in the future.

Abbreviations
AD: Alzheimer’s disease; ADMET: Absorption, distribution, metabolism, excre-
tion, and toxicity; AChE: Acetylcholinesterase; AE: Mean effect; BOILED-egg: 
Brain or intestinal estimated permeation method; BBB: Blood–brain barrier; 
CADD: Computer-aided drug design; DFT: Density functional theory; GFA: 
Genetic function approximation; HIA: Human gastrointestinal absorption; HBA: 
Hydrogen bond acceptor; HBD: Hydrogen bond donor; LOF: Lack of fit; LAD: 
Leverage applicability domain; MLR: Multi-linear regression; MW: Molecular 
weight; NRB: Number of rotatable bonds; PAINS: PAINS Pan assay interference 
compounds; QSAR: Quantitative structural activity relationship; SE: Standard 
error; TPSA: Topological polar surface area; VIF: Variance inflation factor; Xi: 
Regression coefficient.

Acknowledgements
The authors gratefully acknowledged the technical effort of Dr. Abdulfatai 
Usman, Mr. Stephen Ejeh, and Mr. Samuel Adawara all of Chemistry Depart-
ment, Ahmadu Bello University, Zaria.

Author contributions
AA designed and wrote the manuscript; UA, GAS, and AES supervised and 
carried out the statistical analysis. All authors read and approved the final 
manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 26 July 2021   Accepted: 29 March 2022

References
	1.	 Salthouse TA (2004) What and when of cognitive aging. Curr Dir Psychol 

Sci 13(4):140–144. https://​doi.​org/​10.​1111/j.​0963-​7214.​2004.​00293.x
	2.	 Qiang W, Yau W, Lu J, Collinge J, Tycko R (2017) Letter. Nature. https://​doi.​

org/​10.​1038/​natur​e20814
	3.	 Huang W, Zhang X, Chen W (2016) 2016 Role of oxidative stress in Alzhei-

mer’s disease (review). Nature. https://​doi.​org/​10.​3892/​br.​2016.​630

	4.	 Bru C, Leonetti F, Altomare C, Carotti A (2001) Brief articles. Nature 
66:3195–3198

	5.	 Thiratmatrakul S, Yenjai C, Waiwut P, Vajragupta O (2014) European Jour-
nal of Medicinal Chemistry Synthesis, biological evaluation and molecular 
modeling study of novel tacrine e carbazole hybrids as potential mul-
tifunctional agents for the treatment of Alzheimer’s disease. Eur J Med 
Chem 75:21–30. https://​doi.​org/​10.​1016/j.​ejmech.​2014.​01.​020

	6.	 Samadi A, Valderas C, Ríos CDL et al (2011) Cholinergic and neuroprotec-
tive drugs for the treatment of Alzheimer and neuronal vascular diseases. 
II. Synthesis, biological assessment, and molecular modelling of new 
tacrine analogues from highly substituted 2-aminopyridine-3-carboni-
triles. Bioorgan Med Chem 19(1):122–133. https://​doi.​org/​10.​1016/j.​bmc.​
2010.​11.​040

	7.	 Association A (2015) 2015 Alzheimer’s disease facts and figures. Alzhei-
mer’s Dementia 11(3):332–384. https://​doi.​org/​10.​1016/j.​jalz.​2015.​02.​003

	8.	 Ihalainen J, Sarajärvi T, Rasmusson D et al (2011) Neuropharmacology 
Effects of memantine and donepezil on cortical and hippocampal acetyl-
choline levels and object recognition memory in rats. Neuropharmacol-
ogy 61(5–6):891–899. https://​doi.​org/​10.​1016/j.​neuro​pharm.​2011.​06.​008

	9.	 Wu X, Zeng H, Zhu X, Ma Q, Hou Y, Wu X (2013) European Journal of Phar-
maceutical Sciences Novel pyrrolopyridinone derivatives as anticancer 
inhibitors towards Cdc7: QSAR studies based on dockings by solvation 
score approach. Eur J Pharm Sci 50(3–4):323–334. https://​doi.​org/​10.​
1016/j.​ejps.​2013.​07.​013

	10.	 Li P, Jia J, Fang M, Zhang L, Guo M, Xie J (2014) In vitro and in vivo ACE 
inhibitory of pistachio hydrolysates and in-silico mechanism of identified 
peptide binding with ACE. Process Biochem 49(5):898–904. https://​doi.​
org/​10.​1016/j.​procb​io.​2014.​02.​007

	11.	 Mo J, Chen T, Yang H et al (2020) dimethylbenzimidazolinones as cho-
linesterase inhibitors against Alzheimer’s disease. Nature. https://​doi.​org/​
10.​1080/​14756​366.​2019.​16995​53

	12.	 Adeniji SE, Uba S, Uzairu A (2018) QSAR modeling and molecular docking 
analysis of some active compounds against mycobacterium tuberculosis 
receptor (Mtb CYP121). J Pathogens 2018:1–24. https://​doi.​org/​10.​1155/​
2018/​10186​94

	13.	 Oluwaseye A, Uzairu A, Shallangwa GA, Abechi SE. Journal of King Saud 
University—Science Quantum chemical descriptors in the QSAR studies 
of compounds active in maxima electroshock seizure test; 2018.

	14.	 Adeniji SE, Uba S, Uzairu A (2018) Journal of King Saud University – Sci-
ence Theoretical modeling for predicting the activities of some active 
compounds as potent inhibitors against Mycobacterium tuberculosis 
using GFA-MLR approach. J King Saud Univ Sci. https://​doi.​org/​10.​1016/j.​
jksus.​2018.​08.​010

	15.	 Adeniji SE, Uba S, Uzairu A (2020) Quantitative structure–activity relation-
ship and molecular docking of 4-Alkoxy-Cinnamic analogues as anti-
mycobacterium tuberculosis. J King Saud Univ Sci 32(1):67–74. https://​
doi.​org/​10.​1016/j.​jksus.​2018.​02.​005

	16.	 Abdulfatai U, Uzairu A, Uba S, Shallangwa GA (2019) Molecular modelling 
and design of lubricant additives and their molecular dynamic simula-
tions studies of Diamond-Like-Carbon (DLC) and steel surface coating. 
Egypt J Pet 28(1):111–115. https://​doi.​org/​10.​1016/j.​ejpe.​2018.​12.​004

	17.	 Tropsha A, Golbraikh A. Predictive QSAR Modeling Workflow , Model 
Applicability Domains , and Virtual Screening. Nature 2007 66:3494–3504.

	18.	 Ajala A, Uzairu A, Suleiman IO, Uttu AJ (2018) Theoretical investigation of 
correlations between molecular and electronic structure and antifungal 
activity in coumarin derivatives: combining Qsar and Dft studies. J Adv 
Med Pharma 16(3):1–18. https://​doi.​org/​10.​9734/​JAMPS/​2018/​22801

	19.	 Roy K, Mitra I, Kar S, Ojha PK, Das RN, Kabir H. Comparative studies on 
some metrics for external validation of QSPR models. 2012.

	20.	 Veerasamy R, Rajak H, Jain A, Sivadasan S. Validation of QSAR models—
strategies and importance validation of QSAR models—strategies and 
importance. 2011. April 2019.

	21.	 Paul Gleeson M, Hersey A, Hannongbua S (2011) In-silico ADME models: 
a general assessment of their utility in drug discovery applications. Curr 
Top Med Chem 11(4):358–381. https://​doi.​org/​10.​2174/​15680​26117​
94480​927

	22.	 Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evalu-
ate pharmacokinetics, drug-likeness and medicinal chemistry friendliness 
of small molecules. Sci Rep 7:1–13. https://​doi.​org/​10.​1038/​srep4​2717

	23.	 Ambure P, Aher RB, Gajewicz A, Puzyn T, Roy K (2015) “NanoBRIDGES” 
software: open access tools to perform QSAR and nano-QSAR modeling. 

https://doi.org/10.1111/j.0963-7214.2004.00293.x
https://doi.org/10.1038/nature20814
https://doi.org/10.1038/nature20814
https://doi.org/10.3892/br.2016.630
https://doi.org/10.1016/j.ejmech.2014.01.020
https://doi.org/10.1016/j.bmc.2010.11.040
https://doi.org/10.1016/j.bmc.2010.11.040
https://doi.org/10.1016/j.jalz.2015.02.003
https://doi.org/10.1016/j.neuropharm.2011.06.008
https://doi.org/10.1016/j.ejps.2013.07.013
https://doi.org/10.1016/j.ejps.2013.07.013
https://doi.org/10.1016/j.procbio.2014.02.007
https://doi.org/10.1016/j.procbio.2014.02.007
https://doi.org/10.1080/14756366.2019.1699553
https://doi.org/10.1080/14756366.2019.1699553
https://doi.org/10.1155/2018/1018694
https://doi.org/10.1155/2018/1018694
https://doi.org/10.1016/j.jksus.2018.08.010
https://doi.org/10.1016/j.jksus.2018.08.010
https://doi.org/10.1016/j.jksus.2018.02.005
https://doi.org/10.1016/j.jksus.2018.02.005
https://doi.org/10.1016/j.ejpe.2018.12.004
https://doi.org/10.9734/JAMPS/2018/22801
https://doi.org/10.2174/156802611794480927
https://doi.org/10.2174/156802611794480927
https://doi.org/10.1038/srep42717


Page 19 of 19Ajala et al. Beni-Suef Univ J Basic Appl Sci           (2022) 11:53 	

Chemom Intell Lab Syst 147:1–13. https://​doi.​org/​10.​1016/j.​chemo​lab.​
2015.​07.​007

	24.	 Tropsha A (2010) Best practices for QSAR model development, validation, 
and exploitation. Mol Inf 29(6–7):476–488. https://​doi.​org/​10.​1002/​minf.​
20100​0061

	25.	 Beheshti A, Pourbasheer E, Nekoei M (2012) QSAR modeling of antima-
larial activity of urea derivatives using genetic algorithm—multiple linear 
regressions. J Saudi Chem Soc 1:1–9. https://​doi.​org/​10.​1016/j.​jscs.​2012.​
07.​019

	26.	 Matlock MK, Hughes TB, Dahlin JL, Swamidass SJ (2018) Modeling small-
molecule reactivity identifies promiscuous bioactive compounds. J Chem 
Inf Model 58(8):1483–1500. https://​doi.​org/​10.​1021/​acs.​jcim.​8b001​04

	27.	 Enzymes T (2007) The biochemistry of drug metabolism—an introduc-
tion. Chem Biodivers 4:2031–2122

	28.	 Van Waterschoot RAB, Schinkel AH (2011) A critical analysis of the inter-
play between cytochrome P450 3A and P-Glycoprotein: recent insights 
from knockout and transgenic mice. Pharmacol Rev 63(2):390–410. 
https://​doi.​org/​10.​1124/​pr.​110.​002584.​are

	29.	 Di L, Di L (2014) The role of drug metabolizing enzymes in clearance. 
Expert Opin Drug Metab Toxicol. https://​doi.​org/​10.​1517/​17425​255.​2014.​
876006

	30.	 Wolf CR, Smith G, Smith RL (2000) Clinical review. Br Med J 320:987–990
	31.	 Egan WJ, Merz KM, Baldwin JJ (2000) Prediction of drug absorption using 

multivariate statistics. J Med Chem 43(21):3867–3877. https://​doi.​org/​10.​
1021/​jm000​292e

	32.	 Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based 
approach in designing combinatorial or medicinal chemistry libraries 
for drug discovery. 1. A qualitative and quantitative characterization of 
known drug databases. J Combin Chem 1(1):55–68. https://​doi.​org/​10.​
1021/​cc980​0071

	33.	 Muegge I, Heald SL, Brittelli D (2001) Simple selection criteria for drug-like 
chemical matter. J Med Chem 44(12):1841–1846. https://​doi.​org/​10.​1021/​
jm015​507e

	34.	 Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) 
Molecular properties that influence the oral bioavailability of drug can-
didates. J Med Chem 45(12):2615–2623. https://​doi.​org/​10.​1021/​jm020​
017n

	35.	 Lipinski CA (2016) Rule of five in 2015 and beyond: target and ligand 
structural limitations, ligand chemistry structure and drug discovery pro-
ject decisions. Adv Drug Deliv Rev 101:34–41. https://​doi.​org/​10.​1016/j.​
addr.​2016.​04.​029

	36.	 Linn C, Roy S, Samant LR, Chowdhary A (2015) Research article in-silico 
pharmacokinetics analysis and ADMET of phytochemicals of Datura. J 
Chem Pharm Res 7(11):385–388

	37.	 Glass CK, Ogawa S (2006) Combinatorial roles of nuclear receptors in 
inflammation and immunity. Nat Rev Immunol 6:44–55. https://​doi.​org/​
10.​1038/​nri17​48

	38.	 Ritchie TJ, Ertl P, Lewis R (2011) The graphical representation of ADME-
related molecule properties for medicinal chemists. Drug Discov Today 
16(1–2):65–72. https://​doi.​org/​10.​1016/j.​drudis.​2010.​11.​002

	39.	 Lovering F, Bikker J, Humblet C (2009) Escape from Flatland: increasing 
saturation as an approach to improving clinical success. J Med Chem. 
https://​doi.​org/​10.​1021/​jm901​241e

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.chemolab.2015.07.007
https://doi.org/10.1016/j.chemolab.2015.07.007
https://doi.org/10.1002/minf.201000061
https://doi.org/10.1002/minf.201000061
https://doi.org/10.1016/j.jscs.2012.07.019
https://doi.org/10.1016/j.jscs.2012.07.019
https://doi.org/10.1021/acs.jcim.8b00104
https://doi.org/10.1124/pr.110.002584.are
https://doi.org/10.1517/17425255.2014.876006
https://doi.org/10.1517/17425255.2014.876006
https://doi.org/10.1021/jm000292e
https://doi.org/10.1021/jm000292e
https://doi.org/10.1021/cc9800071
https://doi.org/10.1021/cc9800071
https://doi.org/10.1021/jm015507e
https://doi.org/10.1021/jm015507e
https://doi.org/10.1021/jm020017n
https://doi.org/10.1021/jm020017n
https://doi.org/10.1016/j.addr.2016.04.029
https://doi.org/10.1016/j.addr.2016.04.029
https://doi.org/10.1038/nri1748
https://doi.org/10.1038/nri1748
https://doi.org/10.1016/j.drudis.2010.11.002
https://doi.org/10.1021/jm901241e

	Computational and pharmacokinetics studies of 1,3-dimethylbenzimidazolinone analogues of new proposed agent against Alzheimer’s disease
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	1 Background
	2 Methods
	2.1 Data set gathering and activities
	2.2 Molecular optimization and generation of molecular properties
	2.3 Data normalization, pretreatment, and training and test set generation
	2.4 Derivation of the model and models and validation
	2.5 Leverage applicability domain (LAD)
	2.6 Y-randomization validation and Confirmation of the build model
	2.7 Docking studies
	2.7.1 Receptor and ligand preparation
	2.7.2 Docking of receptor and ligand

	2.8 Drug-likeness and prediction of ADMET

	3 Results
	3.1 QSAR analysis
	3.2 Constructed model
	3.3 Mechanistic information of descriptors in the model built
	3.4 Derivation of the model and models and validation
	3.5 Molecular docking studies
	3.6 Drug change assessment of selected compounds

	4 Discussion
	4.1 QSAR analysis
	4.2 Mechanistic information of descriptors in the model built
	4.3 Derivation of the model and models and validation
	4.4 Molecular docking studies
	4.5 Drug change assessment of selected compounds

	5 Conclusions
	Acknowledgements
	References


