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Synthesis and characterization of poly 
(styrene‑co‑acrylamide)‑graft‑polyanilines 
as new sorbents for mercuric present 
in aqueous hydrocarbon liquids
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Abstract 

Background:  The unprocessing hydrocarbon oil often contains high concentrations of mercury, which damages the 
metallic processing components and have health risk on workers and environment. Mercuric removal unit associated 
with natural gas processing plant is failed to complete mercury removal and then mercury distributed in most places 
of removal unit. Most of unremoved mercury are found in polar solutions.

Results:  Styrene-co-acrylamide-graft-polyanilines were synthesized and characterized. The copolymer formed by 
free radical emulsion copolymerization of styrene-acrylamide (14:1) using ammonium persulphate (APS) at 60 °C. In 
addition, the grafting process was also achieved by oxidation chemical polymerization of the above copolymer with 
both aniline and 2-chloroaniline using APS. The synthetic polymeric samples were characterized using infrared (IR), 
x-ray diffraction (XRD), scan electron microscope (SEM), transition electron microscope (TEM), thermogravimetric anal‑
ysis (TGA) and Brunauer–Emmett–Teller (BET) to confirm the polymerization process and investigate the polymeric 
samples as new sorbents for Hg (II). Both adsorption kinetics and isotherm models were checked.

Conclusions:  In most cases Hg (II) was adsorbed as multi-layer on the obtained mesopores materials. The grafting 
process enhances the copolymer activity towards Hg (II) removal. The complete removal of mercury from water solu‑
tion portion of mercuric removal unit was achieved by introduction of synthetic polymeric mesopores material based 
on styrene-co-acrylamide-graft-polyanilines. The removal efficiency closed to 100% in case of grafting with poly 
(2-chloroaniline).

Keywords:  Mercury (II) removal, Free radical emulsion copolymerization, Styrene-co-acrylamide-graft-polyanilines, 
Aqueous hydrocarbon oil, Sorption
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1 � Background
Low concentrations of heavy metals can be profoundly 
poisonous and can amass in living beings, causing dif-
ferent diseases. Heavy metals are non-degradable like 
natural toxins. Once within the nourishment chain, 
they were concentrated in living organisms leading to 

high toxicity [1]. Mercury is considered one of the fore-
most poisonous heavy metals, because mercury capable 
of adsorbed via the skin, inward breath or by oral ways 
and produce antagonistic effects on human health [2]. 
Reactive mercury (II) is profoundly the most harmful 
shape of mercury which combine with the amino acid 
cysteine in proteins. Mercury (II) ions are considered as 
the most hazardous among different shapes of mercury 
due to their neurological harmfulness, persistence, vola-
tility, and bio-accumulation through nourishment chain 
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which has a real danger to both human health or human 
utilization and living being security [3].

Mercuric compounds listed in most classes of priority 
pollutants, so guidelines and regulations destined to lim-
iting mercuric levels in the environment [4].

Mercury maximum level is confined to 1  μg/L and 
1 μg/m3 in both water and air according to World Health 
Organization (WHO) guidelines. Moreover, a permissi-
ble concentration of 0.2 μg/m3 has been assessed accord-
ing to the WHO for long-term inward breath exposure to 
the confined natural mercury vapor in permitted intake 
of 2  μg per each kg body weight per day [5]. Several 
sources have contributed significantly to mercury out-
flow into the environment like oil refineries, chloralkali 
wastewater, paper and pulp fabricating, power generation 
plants, fertilizers industries, rubber processing and com-
parable industry [6, 7].

Combustion of hydrocarbons was listed as anthro-
pogenic sources of mercuric compounds to the envi-
ronment in the world. A side from that, rivers polluted 
with mercury from liquid discharges, nearby petroleum 
refineries and petrochemical plants, where mercury is 
the most known and common heavy metals present in 
petroleum oil and natural gas [8]. An assortment of mer-
cury-containing species, including elemental mercury, 
their compounds, and a mixture thereof, is contained in 
many types of crude oils [9]. The existence of these ele-
ments in crude oils can cause serious impacts because 
of their posing good product quality, environmental 
and safety issues. Besides, the effect of mercury present 
in feeds on processing systems which includes the dete-
rioration of equipment components, catalyst poisoning, 
hazardous waste production, and an increased risk to 
workers’ health and safety. All of these factors may cause 
reduction the final hydrocarbon product qualities, either 
directly or indirectly [10]. Mercury in some oil field, 
sources of water and refinery wastewater was of low con-
centrations, but still above the regulatory discharge lim-
its. Mercury solubility is controlled by elemental mercury 
(~ 60 ppb at 25 °C). The oxidation of contaminated water 
leads to increasing of mercury concentration by solubil-
ity of elemental mercury by formation of ionic species. 
Removal of mercury present in water before discharge 
into the environment is generally minimize the effect of 
contamination and biotic methylation with mercury [11]. 
It is clear from the above considerations that removal 
of mercury from oil, water, industrial wastes and waste-
water is a main target of most environmental research-
ers. Several techniques are accessible; ion exchange [12], 
adsorption [13], chemical precipitation [14], coagula-
tion [15] and membrane technologies [16]. Adsorption 
is the most versatile and commonly used technique. The 
most widely sorbent used is activated carbon. Because 

of, activated carbon is costly, other sorbent materials are 
listed in the last years, especially of low-cost adsorbents 
[17–21].

However, most of used adsorbents endure from low 
adsorption capacities, in addition, low removal efficien-
cies of Hg (II). Consequently, researchers have been look-
ing for new efficient adsorbents. Polymeric materials of 
polyfunctional groups are more prominent candidates as 
adsorbents due to their have high removal capacity and 
quick rate of adsorption [13, 22–25].

Styrene as one of the most flexible monomers avail-
able can be polymerized by different techniques such as 
free radical, anionic and cationic polymerization, group 
transfer, redox, thermal photopolymerization, and radia-
tion polymerization. In addition, styrene can be polym-
erized using a variety of methods, suspension, emulsion, 
solution. The most widely used polymerization technique 
is the bulk polymerization. Each approach would result 
in a different set of product characteristics. Further-
more, acrylonitrile, butadiene, acrylates, vinyl acetate, 
vinylchloride, and a variety of other monomers can eas-
ily co-polymerize with styrene [26]. Acrylamide (AA) can 
be used as a co-monomer during the polymerization of 
styrene in an emulsifier and/or free aqueous medium. 
Because of the existence of amide groups structure sur-
face, AA is supposed to act as a stabilizer for the resulting 
latex, allowing it to be used for a variety of purposes [27]. 
Conducting polymers such as polyanilines have been uti-
lized in many fields including erosion assurance, auxiliary 
rechargeable batteries, sensors and controlled medicate 
conveyance [28–34]. Polyanilines (PANI) are a promis-
ing conducting polymer due to their price and differ-
ent properties, stability, ease of synthesis and treatment. 
PANI and polyaniline/polystyrene composite have been 
utilized as the base material for the adsorption of Hg ions 
from aqueous media [35–38]. On amino group present in 
natural [24, 39, 40] and/or synthetic polymers was per-
formed using aniline derivatives to check their properties 
in different applications [41–44].

The main target of this work is the uptake of Hg (II) 
from wastewater in petroleum field, based on easy and 
cheap polymeric materials. Styrene-acrylamide (14:1) 
copolymer was synthesized by emulsion polymerization 
technique in the presence of 4-dodecylbezenesulfonic 
acid and ammonium persulfate (APS) at 70  °C under 
nitrogen. The obtained copolymer was grafted with 
both polyaniline and poly (2-chloroaniline) using APS 
as oxidant in THF/water (1:1.5 v/v) at 5 °C. The prepared 
polymeric samples are dried and grinded for characteri-
zation and removal application of Hg (II) from wastewa-
ter in petroleum field. The data reveal that the grafting 
enhances the efficiency of acrylamide-styrene copoly-
mer towards removal of Hg (II) > 99%. In addition, the 
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adsorption processes are obeyed Freundlich isotherm 
and pseudo-second-order kinetics.

2 � Methods
2.1 � Materials
Styrene ≥ 99%, dimethylformamide (DMF) 99%, ammo-
nium persulfate (APS), and 4-dodecylbezenesulfonic 
acid (emulsifier) ≥ 95% were all purchased from Sigma-
Aldrich (Germany). Acrylamide 98% and tetrahydrofuran 
(THF) 99.5% were products of Loba-Chemie (India). Ani-
line 99% and 2-chloroaniline 98% were produced from 
Merck-Co (Germany). Dithizone AR 99.1% was produced 
from Qualikems (India). Mercuric chloride (99%) was 
produced from Alpha Chemika (India). Sodium hydrox-
ide pellets 98.5% and methanol 99.5% were provided by 
El-Nasr Pharmaceutical Chemical Company (Egypt). The 
water used in all experiments is distilled water.

2.2 � Synthesis of styrene/acrylamide (14:1) copolymer
Styrene-co-acrylamide was synthesized by free emulsion 
polymerization in a three-necked flask equipped with a 
reflux condenser and a mechanical stirrer immersed in 
water bath as follows [45].

Fourteen milliliters styrene was miscible in 20 mL DMF 
in a closed flask in the presence of 0.2  mL of 4-dode-
cylbezenesulfonic acid. In a second flask 0.7108 g acryla-
mide was dissolved in 10  mL distilled water. In a third 
flask 5 g APS was dissolved in 10 mL distilled water. The 
three flasks were left 10 min in a 60 °C water bath. Then, 
acrylamide solution was poured slowly on styrene solu-
tion with manual stirring. After that, APS as initiator was 
slowly added to the reaction flask containing two mono-
mers with reflux and stirring (400 revolutions per min-
ute (rpm)) at 60 °C for 3 h, and then, the reaction left at 
room temperature overnight. The copolymer was isolated 
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Fig. 1  IR spectrum of the investigated polymeric samples

Table 1  IR absorption bands and their assignments

S, Strong; B, Broad; M, Medium; W, Weak; SH, Sharp; Sh, Shoulder

Wave number Assignment References

Copolymer Aniline graft 2-Chloroaniline 
graft

3454S/B NH2 stretching [47]

3332S/B 3332S/B

3205S/M B 3200S/B 3202S/M B H-bonded NH Stretching [48–51]

3026S 3049S/B 3026S Aromatic C–H stretching/H-bonded (N–H) [52–54]

2921S 2926S 2921S Aliphatic CH stretching [55]

2857M 2859S

2503W 2600S 2618M/B

1668S 1659S/M C=O [56]

1604SH/Sh 1578M/B 1593S

1445S 1418S 1448S C–N stretching/C=C stretching of benzene ring [52, 53]

1394S 1288W 1303M CH2 bending [57]

1248M

1199M

1083S/B 1090B 1074S/B In plan deformation (CH) (mono substituted ring) [52, 53, 58]

758S/SH 742M 753S Out of plan NH bend/out-of-plan deformation CH (mono substituted or 1,2-di 
substituted ring)

[48, 52–54, 57–59]

694S/SH 691M 694S Out of plan NH bend/out-of-plan ring bending (mono substituted ring) and/or aryl 
C–Cl stretching vibration

[52–54, 57, 59, 60]

615W 612S/SH 612M/SH
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by addition of 20 mL methanol as non-solvent and then 
washed with both distilled water and DMF, and dried in 
vacuum oven at 60 °C.

2.3 � Synthesis of styrene‑co‑acrylamide‑gr‑aniline 
and 2‑chloroaniline in general

Styrene-co-acrylamide (0.5  g) was dissolved in 10  mL 
THF, and 1  mL of aniline or 2-chloroaniline was dis-
solved in the copolymer solution by stirring during the 
addition. APS solution (0.5  g/15  mL) was added to the 
reaction medium thermostated at 5 °C under nitrogen for 
3 h. After that, the polymerization reaction was left over-
night. The formed graft was collected by decantation and 
continuous washing with DMF/water (1:1) mixture and 
then dried at room temperature and finally in vacuum 
oven at 70 °C [43, 44].

2.4 � Instrumental techniques
The infrared measurements were carried out using Shi-
madzu FTIR Vertex 70 Bruker Optics (Japan) technique 
to identify the functional groups for both synthesized 
copolymer and their grafts. Fourier transform infrared 

(FTIR) spectra of the samples were recorded from 400 
to 4000 cm−1 using KBr pellets at room temperature.

2.5 � Ultraviolet visible spectroscopy
Ultraviolet spectroscopy of investigated materials is 
carried out using Shimadzu visible spectrophotometer 
Double beam 2600. Also, Hg (II) solution was followed 
and measured spectrophotometrically at 520 nm.

2.6 � Morphological studies using XRD and SEM
The XRD patterns of synthesized copolymer and its 
grafts were characterized using PANalytical Empyrean 
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Fig. 2  XRD pattern of copolymer (a), aniline graft (b) and 
2-chloroaniline graft (c)

Fig. 3  SEM images of styrene-acrylamide (14:1) copolymer (a), aniline 
graft (b) and 2-chloroaniline graft (c)
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X-ray diffractometer 202964. The scan range was 
(5°–140°).

The electron microscopic pictures were taken using 
JSM-6510LA scanning electron microscopy (SEM), 
JEOL, Japan. TEM measurements were carried out using 
a carbon-coated copper grid as a photographic plate of 
the transmission electron microscope.

2.7 � Thermogravimetric analysis
Thermogravimetric analysis (TGA) analysis using detec-
tor type Shimadzu TGA-50H with its component plati-
num cell, nitrogen atmosphere, and 20  °C/min rate 
flowing was used to investigate the thermal stability of 
the prepared polymeric samples.

2.8 � BET measurements
The nitrogen adsorption–desorption measurements of 
the polymeric samples were performed using BELSORP-
max Ver1.3.5 analyzer. The specific surface areas were 
determined based on Brunauer–Emmett–Teller (BET) 
theory. Pore size distributions were deduced from the 
adsorption isotherms according to the nonlocal density 
function theory (NLDFT).

Fig. 4  TEM images of a copolymer, b aniline graft and c 
2-chloroaniline graft
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Fig. 5  TGA of copolymer (a), aniline graft (b) and 2-chloroaniline 
graft (c)
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2.9 � Adsorption studies
The contaminated samples with mercuric were supplied 
from the Egyptian petroleum research institute (EPRI) 
[8]. In general, Hg2+ concentration was followed by 
measuring the absorbance of Hg (II)/dithizone (dissolved 
in isopropyl alcohol) [46] purple color at 520 nm, using 
ultraviolet spectroscopy carried out using Shimadzu vis-
ible spectrophotometer Double beam 2600. The mercury 
loading capacities were calculated from the initial and 
final Hg (II) contents of the solution.

3 � Results
3.1 � Characterization of polymeric samples
3.1.1 � IR spectrum and UV–visible spectroscopy
Infrared spectrums of styrene-co-acrylamide and their 
polyaniline and poly (2-chloroaniline) grafts are repre-
sented in Fig.  1, and the absorption bands are given in 
Table  1. The other absorptions and their matching are 
summarized in Table 1.

The UV–visible spectroscopy of the three prepared 
polymeric samples reveals that the maximum absorp-
tion bands are at 393, 544 and 546  nm for copolymer, 
copolymer/aniline and copolymer/2-chloroaniline graft, 
respectively. The intensities of graft peaks are very high 
with respect to the copolymer one which indicated the 
difference in structures and electronic transition. This 
difference may be due to differences in charges densities 
of π-electrons and structures on the present polymeric 
samples.

3.1.2 � XRD, SEM and TEM
XRD patterns of the prepared polymeric samples are pre-
sented in Fig. 2. The figure shows that the grafting process 
of both aniline and 2-chloroaniline into styrene/acryla-
mide copolymer enhanced the crystallinity of copolymer. 

In addition, the crystallite size (nm) is changed, and for 
copolymer, there are only two sizes 5.58 and 11.00. In 
case of copolymer grafted with aniline, the crystallite size 
ranged from 5.25 to 93.23 with more than one size and 
in case of grafting with 2-chloroaniline the crystallite size 
decrease with variation in size to be 1.28–93.12.

Scan electron microscope (SEM) and transmission 
electron microscope (TEM) pictures for the three poly-
meric materials are given in Figs.  3 and 4. The pictures 
show that the grafting process gives variation in particle 
shapes and sizes. Surface with internal voids and particles 
of irregular shapes and broad size distribution also, hol-
low spheres are observed. Grafts include spherical par-
ticle shapes more than copolymer. In addition, the size 
of particles is 10.5–11  nm in case of copolymer which 
increased on grafting with polyaniline and ranged from 
38 to 129  nm, but the grafting with 2-chloroaniline the 
particle size decreased and ranged from 7.8 to 13 nm.

3.1.3 � Thermogravimetric analysis (TGA)
The effect of temperature on the weight of polymeric 
samples under investigation is presented in Fig.  5. The 
weight loss of polymeric samples was followed with rais-
ing temperature up to ~ 1000 °C except in copolymer up 
to 700 °C due to thermal stability of the residual carbonic 
matter. The thermal fragmentation of investigated poly-
meric samples and their assignment are summarized in 
Table 2.

3.1.4 � BET measurements
The adsorption–desorption of N2 gas on the surface of 
the three polymeric samples is followed in the range of 
p/po 0–100. The data are presented in Fig. 6. The figure 
reveals that the adsorption on these surfaces is of Type 
III, which indicates unrestricted multi-layer formation 
process with strong interaction between adsorbate and 

Table 2  TGA data of the synthesized polymeric samples

Copolymer Aniline graft 2-Chloroaniline graft Assignments

Mid-point °C Approx. 
wt loss%

Mid-point °C Approx. 
wt loss%

Mid-point °C Approx. 
wt loss%

103 0.06  ≤ 100 0.045  ≤ 100 2.4 Humidity loss

174 1.04 – – 166 5.4 Bonded water loss

– – 202 8.56 – –

– – 227 5.4 223 4.75 Doping counter ions losing on amine and/or imine nitro‑
gen atom in case of benzenoid or quinoid rings

312 4.6 – – – – May be attributed to losing of aliphatic part of copolymer

421.7 34.0 318.1 15.99 368 44.05

– – 420 26.0

– – 812 9.0 – –

 > 421.7 60.3  > 812 35.0  > 368 43.4 Carbon residues
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synthetic polymeric adsorbents. In addition, the hyster-
esis loop like H4 loop gives narrow slit-like pore, and 
there are internal voids, particles of irregular shapes, 
broad size distribution and hollow spheres with wall 
composed of ordered mesopores surfaces which 
agreed with both SEM and TEM pictures. The rela-
tion between dVp [cm3 g−1] against pore width (nm) is 
also presented in Fig.  6. The measured data are given 
in Table  3. The data reveal that the grafting process 
enhances these variables of copolymer, such as surface 
area and pore size.

3.2 � Adsorption of Hg (II) onto copolymer and their grafts
3.2.1 � Influence of contact time using different doses 

of polymeric sorbents
Effect of contact time on removal % of Hg (II) in the 
presence of styrene-acrylamide (14:1) copolymer, ani-
line graft and 2-Chloroaniline graft copolymers as 
new sorbents with polymer weights of (0.1, 0.2, 0.3 
and 0.5  g) were separately studied. The obtained data 
are graphically presented in Fig. 7. Data reveal that, the 
ability of the polymeric sorbents on the removal of Hg 
(II) increases by increasing both copolymer weight and 
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contact time in the range of study. All experiments were 
performed at pH = 7 and 20 °C. At 20 min the removal 
efficacy % of copolymer, aniline graft and 2-chloroani-
line graft are 65, 96.3 and 99.7, respectively, using 0.5 g 
of sorbents. Also, the efficiency of grafts becomes good 
at 0.2 g sorbents and then increased by increasing the 
quantity of dose due to increasing of polymer surface 
areas and functions by increasing their quantities.

3.2.2 � Effect of temperature and thermodynamics
The effect of temperature in the range 15–37  °C on Hg 
(II) uptake from petroleum source using 0.5  g of each 
investigated polymeric samples was separately performed 
at pH = 7. The obtained data with time are graphically 
presented in Fig. 8. The results of the three polymer sam-
ples show that removal efficiency decreases with raising 
temperature. The thermodynamic parameters can be 
deduced from the relations [61].

where R is the universal gas constant (8.314 J mol−1 K−1), 
T is the temperature in Kelvin, (ΔH°) is the standard 
enthalpy, KC is the Langmuir constant, and (ΔS°) is the 
entropy of the adsorption process. Both ΔH° and ΔS° of 
adsorption are estimated from the relationship between 
lnKC versus 1/T (cf. Fig. 9) [62]. The calculated data are 
tabulated in Table 4. The calculated data were performed 
at time 20, 15 and 5 min for copolymer, aniline graft and 
2-chloroaniline graft, respectively.

(1)�G
◦

= −RT LnKc

(2)�G
◦

= �H
◦

− T�S
◦

(3)LnKc = �S
◦

/R +�H
◦

/RT

Table 3  Pore size and surface area parameters of the polymer 
samples

Variables Copolymer Aniline graft 2-Chloroaniline 
graft

Pore size. Vp (cm3/g) 0.0005 0.0042 0.0149

W1 (peak area) nm 0.4422 4.3903 4.3903

W2 (peak volume) nm 0.7305 4.3903 4.3903

Vm cm3/g (stp) 0.3227 0.9580 3.3586

Total pore volume cm3/g 0.0012 0.0049 0.0169

C 1.3857 5.5895 5.9617

Mean pore diameter nm 3.5114 4.6581 4.6278

Surface area m2/g 1.4045 4.1698 14.6180
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The values of the standard enthalpy (ΔH°) in Table  4, 
reveal that the adsorption of Hg2+ on the surface of the 
three polymer materials is endothermic. The negative 
value of Gibbs free energy refer to the adsorption process 
is spontaneous.

3.3 � Adsorption isotherms
3.3.1 � Langmuir isotherm
The formation of mono-layer adsorbate on the surface of 
adsorbent, which describes quantitatively, then no addi-
tion of any adsorption layers takes place, hence Langmuir 
model illustrate the equilibrium distribution of metal 
ions between solid and liquid phase. Langmuir repre-
sented Eq. (4), [63].

where
Ce is the equilibrium concentration of adsorbate (mg 

L−1).
qe is the amount of Hg+2 adsorbed per gram of the 

adsorbent at equilibrium (mg g−1).

(4)Ce/qe = Ce/Qm + 1/Qmb

Qm is maximum mono-layer coverage capacity (mg 
g−1).
KL is Langmuir isotherm constant (L mg−1).
The values of Qm and KL were calculated from the 

slope and intercept of plot Ce/qe versus Ce, (see Fig. 10).

3.3.2 � Freundlich isotherm
The widely applied isotherm in the investigation of 
adsorption of different compounds on solid surfaces is 
Freundlich isotherm [64]. In the present work, Freun-
dlich model is used to investigate the adsorption results 
of Hg2+ on copolymer, aniline graft and 2-chloroan-
liline graft, the equilibrium results are fitted with the 
logarithmic form of Freundlich model. Nonlinear form 
of Freundlich adsorption model is qe = Kf Ce

1/n, but the 
linear form is presented in Eq. (5). The equilibrium con-
centration of adsorbed metal ion on solid copolymer 
surface is expressed by qe (mg/g), Ce is bulk concentra-
tions of metal ion at equilibrium (mg/L), Kf is isotherm 
constant and n refers to adsorption intensity.
Kf is an indicator of adsorption capacity, while 1/n 

refers to the adsorption strength in the process which 

Fig. 8  Removal efficiency (%) of copolymer (a), aniline graft (b) and 2-chloroaniline graft (c) and with time contacts 20 m, 15 m and 5 m (d) at 
temperatures 15 °C, 20 °C, 25 °C and 37 °C
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deduced form the intercept and the slope of linear Fre-
undlich form, (see Fig. 11).

3.3.3 � Temkin isotherm
Temkin isotherm model [65] contains factor refer to 
the interaction between adsorbates which absent in 

(5)Ln qe = Ln Kf + (1/n) Ln Ce

case of Langmuir isotherm model. Thermodynamic 
data reflected the endothermic nature for adsorption of 
mercury ion using copolymer. The adsorbent–adsorb-
ate interactions are governed by factors present in Tem-
kin isotherm. By ignoring the concentration values of 
all molecules in the layer, adsorption decreases linearly 
rather than logarithmic with coverage.

where qe is the amount of adsorbed Hg2+ by the poly-
meric sample at equilibrium (mg g−1), BT is constant 
and equal to RT/b that related to the heat of sorption (J 
mol−1), and R is the general gas constant (8.314 J mol−1), 
T is the temperature in Kelvin (K), b is Temkin iso-
therm constant, and KT is the Temkin isotherm equilib-
rium binding constant (L g−1). The plots of lnqe versus 
lnCe (see Fig.  12). The adsorption data obtained for the 
three investigated polymeric samples are summarized in 
Table 5.

(6)qe = BTLn KT + BTLn Ce
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Fig. 9  Van’t Hoff plot for the adsorption of Hg2+ on copolymer (a), aniline graft (b) and 2-chloroniline graft (c)

Table 4  Thermodynamic parameters

Temperature (K) ∆G (kJ/Mole)

Copolymer Aniline graft 2-Chloroaniline 
graft

288  − 1.85  − 8.01  − 8.44

293  − 1.51  − 5.74  − 7.96

298  − 0.66  − 4.23  − 6.28

310 0.73  − 1.17  − 2.86

∆H (kJ mol−1) 36.83 94.85 84.92

∆S (J mol−1 K−1) 137.78 344.53 297.45
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3.4 � Adsorption kinetics
Kinetic adsorption studies of mercuric ion on styrene-
acrylamide (14:1), aniline graft and 2-chloroaniline 
graft copolymers were investigated to evaluate the rate/
order of adsorption. Order of adsorption is analyzed 
using two kinetic models called pseudo-first-order 
kinetic model [66] that presents the relations between 
rate of sorption sites for the adsorbents which occupied 
and the unoccupied sites (Eq.  7), and pseudo-second-
order kinetic model [67] which shows the dependency 
of adsorbent capacity for adsorption on time (Eq. 8).

where k1 (min−1) is the rate constant of the pseudo-
first order, both qe and qt are the amount of metal ion 
adsorbed (mg/g) at equilibrium and at time t (min) 
and k2 is the rate constant of pseudo-second order (g 

(7)Ln (qe − qt) = Ln qe − K1t

(8)t/qt = 1/k2q
2
e + t/qe

mg−1  min−1). The graphical representation of the two 
models is given in Figs. 13 and 14. Parameters of the first 
and second-order models were deduced from the slope 
and intercept of linear relations of both ln (qe–qt) versus t 
and (t/qt) versus t (see Figs. 13 and 14). The obtained data 
are given in Table 6.

From the obtained data presented in Figs. 13 and 14, 
Table 6 and the values of R2, it is clear that the sorption 
process of Hg+2 on the surface of styrene-acrylamide 
(14:1), aniline graft and 2-chloroaniline graft copoly-
mers is proceed via the Lagergren pseudo-second order 
reaction.

4 � Discussion
4.1 � Characterization of investigated polymeric samples
The obtained results reveal that the grafting of both 
polyaniline and poly (2-chloroaniline) on styrene-co-
acrylamide was achieved. This fact can be confirmed as 
follows:
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Fig. 10  Langmuir isotherm of copolymer (a), aniline graft (b) and 2-chloroaniline graft (c)
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From both Fig.  1 and Table  1, it is clear that the 
stretching vibration band intensities of free amino 
groups present in copolymer structure are reduced by 
grafting which indicates the performance of grafting 
process [40]. The grafting process enhances the crys-
tallinity of copolymer and gives more wide range of 
crystallite sizes. That is clear from XRD patterns. The 
observed difference in shapes and particle size in SEM 
and TEM pictures, indicates the difference in morphol-
ogy between the three prepared polymeric samples. 
From Fig. 5 (TGA) and Table 2, it can be concluded that 
the temperature of degradation (Td) is 421.7, 318 and 
368 for copolymer, aniline graft and 2-chloroaniline 
graft, respectively, which means the grafting lowering 
Td. BET measurements reveal the differences between 
pore size and surface area between the three investi-
gated polymeric materials which also confirm the sug-
gested synthetic copolymer and its graft.

4.2 � Adsorption of Hg (II)
The adsorption of Hg (II) results can be rationalized 
by the increasing of active sites of polymeric surface 
by increasing their weights. In addition, the sorption 

process proceeds to completion on time. At 20  min 
contact time the removal % efficacy of copolymer, ani-
line graft and 2-chloroaniline graft are 65, 96.3 and 
99.7, respectively, using 0.5  g of sorbents (cf. Fig.  7). 
Also, the efficiency of grafts becomes good at 0.2 g sor-
bents then increased by increasing the quantity of dose. 
That means the grafting process of styrene-acrylamide 
(14–1) copolymer with polyaniline and poly (2-chlo-
roaniline) enhances the efficiency of copolymer on Hg 
(II) uptake. Which can be attributed to the increasing 
of active groups (such as –NH–, –NH2, –Cl), surface 
area and pore sizes. The moieties of both polyaniline 
and poly (2-chloroaniline) contain the above-men-
tioned function groups, so on grafting these groups 
increase in the used polymer samples which leads to 
enhancement efficiencies. The adsorption of Hg (II) in 
our study decreases with rising temperature and the 
process is endothermic (+ ve values of ∆H) and sponta-
neous occurring (∆G −ve values) (cf. Fig. 8). It is clear 
from the data of three investigated isotherms that the 
adsorption of Hg (II) on the surface of these polymeric 
samples are multi-layers obeying Freundlich isotherm. 
This result confirms the obtained morphology by BET 
measurements. In addition, kinetic data confirm the 
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Fig. 11  Freundlich isotherm of copolymer (a), aniline graft (b) and 2-chloroaniline graft (c)
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Lagergren pseudo-second order reaction (cf. Figs.  13, 
14). This confirms the removal mechanism by both 
adsorption and complex formation of Hg (II) with both 
unpaired and π electrons present in copolymer struc-
ture on –NH–, –NH2,, –Cl and benzene or quinoid 

units, respectively. In addition, it can discuss the chem-
ical adsorption type which can occurs by interaction 
between the used polymeric adsorbent materials and 
the dissolved mercuric ions beside the physical one 
[60].
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Fig. 12  Temkin isotherm of copolymer (a), aniline graft (b) and 2-chloroaniline graft (c)

Table 5  Isothermic parameters for the adsorption of Hg2+ on polymer samples

Model Isothermic parameters Parameter values

Copolymer Aniline graft 2-Chloroaniline 
graft

Langmuir Qm (mg g−1) 3.48 2.31 1.95

B 0.511 10.96 59.67

R2 0.83 0.908 0.964

Freundlich N 0.83 1.64 2.73

Kf (mg g−1) 2.02 88.62 108.68

R2 0.997 0.983 0.986

Temkin BT (J mol−1) 0.350 0.442 0.364

KT (L g−1) 1.072 1.057 0.692

R2 0.922 0.932 0.933
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5 � Conclusions
In conclusion, styrene-acrylamide (14:1) copolymer was 
synthesized simply using free emulsion polymerization 
technique, and then, it was used as a base for synthesize 
of aniline and 2-chloroaniline graft copolymers. The 

polymer samples were characterized by FTIR, SEM, 
TEM, XRD, BET, and TGA; these prepared polymers 
are environmentally safe. Aniline and 2-chloroaniline 
grafts are found to have high removal efficacy for Hg2+, 
while styrene-acrylamide copolymer has moderate one.
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Fig. 13  First-order module of copolymer (a), aniline graft (b) and 2-chloroaniline graft (c)

Table 6  Kinetic models data

Model Parameter Parameter value

Copolymer Aniline Graft 2-Chloroaniline 
graft

Pseudo first order K1 (min−1) 0.076 0.176 0.256

qe (mg g−1) 8.48 21.57 73.12

R2 0.125 0.704 0.853

Pseudo second order K2 (min−1) 1.82 14.63 6.91

qe (mg g−1) 0.148 0.283 0.298

R2 0.9914 0.9999 0.9994
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