Skip to main content

Table 2 Statistical probability distributions used in SMCDM studies

From: Stochastic multi-criteria decision-making: an overview to methods and applications

Distributions used in SMCDM problem Reference
Uniform Xiong and Qi [59]; Zhou et al. (2016); Minmin and Li [35]; Jing et al. [21]; Hyde and Maier [17]; Marinoni [34]; Cobuloglu and Büyüktahtakın [9]; Zhao and Li [70]; Marinoni [33]; Zhou et al. [71]
Normal Xiong and Qi [59]; Ramanathan [43]; Peng and Yang [39]; Tavana et al. [51]; Eskandari and Rabelo [11]; Kim et al. [25]; Szidarovszky and Szidarovszky (2009); Marinoni [34]; Zhang et al. [67]; Yang and Huang [60]; Zhou et al. [71]; Kolios et al. [26]; Shengbao and Chaoyuan [48]; Keshavarz Ghorabaee et al. [24]
Weibull Hyde and Maier [17];
Exponential Van den Honert [55];
Binomial Phillips-Wren et al. [40]; Hahn [15]; Hu and Yang [16];
Triangular Banuelas and Antony [3]; Zarghami and Szidarovszky [65]; Marinoni [34]; Prato [41]; Cobuloglu and Büyüktahtakın [9]; Zhao and Li [70]; Marinoni [33]; Marinoni [33]
Beta Jing et al. [20]; Jalao et al. [18]; Marinoni [34]; Cobuloglu and Büyüktahtakın [9]; Zhao and Li [70]; Marinoni [33]
Discrete Stam and Silva [49]; Tan et al. [50]; Zaras [64]; Zaras [62]; Maciej Nowak [37]; Wang et al. [56]; Zhou et al. [71]; Zhou et al. [72]; Zaras [63]
Lognormal Hyde and Maier [17]; Marinoni [34];
Loglogistic Hyde and Maier [17];
Gamma Marinoni [34];
Others (3-parameter Weibull, Smallest extreme value, Chi-Square, Logbeta, Posterier, Multinomial, PERT, InvGauss, Pearson 5, Gaussian, Dirac’s delta function) Mousavi et al. [36]; Ramanathan [43]; Stam and Silva [49]; Hahn [14]; Hahn [15]; Jing et al. [20]; Ramanujan et al. [44]; Hyde and Maier [17]; Durbach et al. [10];