Ahmadi MR, Ghaisari HR (2007) Heat stress and different timed-AI methods influence on pregnancy rates of dairy cows. VeterinarskiArhiv 77:327–335
CAS
Google Scholar
Ahmed N, Doley S, Vanlalhriatpuia (2017) Inclusion of ovulation synchronization strategies for augmentation of fertility in post-partum anestrus crossbred cows. Int J Chem Stud 5:25–26
Google Scholar
Ahuja C, Montiel F, Canseco R, Silva E, Mapes G (2005) Pregnancy rate following GnRH+PGF 2alpha treatment of low body condition, anestrous Bos taurus by Bos indicus crossbred cows during the summer months in a tropical environment. Anim Reprod Sci 87:203–213 Epub 2005 Jan 24. PubMed PMID: 15911171
Article
CAS
Google Scholar
Al-Katanani YM, Drost M, Monson RL, Rutledge JJ, Krininger CE 3rd, Block J, Thatcher WW, Hanse PJ (2002) Pregnancy rates following timed embryo transfer with fresh or vitrified in vitro produced embryos in lactating dairy cows under heat stress conditions. Theriogenology 58:171–182 PubMed PMID: 12182360
Article
CAS
Google Scholar
Alnimer M, De Rosa G, Grasso F, Napolitano F, Bordi A (2002) Effect of climate on the response to three oestrous synchronisation techniques in lactating dairy cows. Anim Reprod Sci 71:157–168 PubMed PMID: 12047925
Article
CAS
Google Scholar
Ari UÇ, Pancarci ŞM, Kaçar C, Güngör Ö, Lehimcioğlu NC, Öztürkler Y, Yıldız S (2017) Effect of progestagen application during Ovsynch protocol on pregnancy rates of lactating-grazing cows. Kafkas Univ Vet Fak Derg 23:319–324
Google Scholar
Bamber RL, Shook GE, Wiltbank MC, Santos JE, Fricke PM (2009) Genetic parameters for anovulation and pregnancy loss in dairy cattle. J Dairy Sci 92:5739–5753. https://doi.org/10.3168/jds.2009-2226
Article
CAS
PubMed
Google Scholar
Bastin C, Loker S, Gengler N, Sewalem A, Miglior F (2010) Genetic relationships between body condition score and reproduction traits in Canadian Holstein and Ayrshire first-parity cows. J Dairy Sci 93:2215–2228. https://doi.org/10.3168/jds.2009-2720
Article
CAS
PubMed
Google Scholar
Bello NM, Steibel JP, Pursley JR (2006) Optimizing ovulation to first GnRH improved outcomes to each hormonal injection of ovsynch in lactating dairy cows. J Dairy Sci 89:3413–3424 PubMed PMID: 16899674
Article
CAS
Google Scholar
Bhoraniya HL, Dhami AJ, Naikoo M, Parmar BC, Sarvaiya NP (2012) Effect of estrus synchronization protocols on plasma progesterone profile and fertility in postpartum anestrous Kankrej cows. Trop Anim Health Prod. 44:1191–1197. https://doi.org/10.1007/s11250-011-0057-1
Article
PubMed
Google Scholar
Bilby TR, Bruno RG, Lager KJ, Chebel RC, Moraes JG, Fricke PM, Lopes G Jr, Giordano JO, Santos JE, Lima FS, Stevenson JS, Pulley SL (2013) Supplemental progesterone and timing of resynchronization on pregnancy outcomes in lactating dairy cows. J Dairy Sci 96:7032–7042. https://doi.org/10.3168/jds.2013-6960
Article
CAS
PubMed
Google Scholar
Bisinotto RS, Pansani MB, Castro LO, Narciso CD, Sinedino LD, Martinez N, Carneiro PE, Thatcher WW, Santos JE (2015) Effect of progesterone supplementation on fertility responses of lactating dairy cows with corpus luteum at the initiation of the Ovsynch protocol. Theriogenology 83:257–265. https://doi.org/10.1016/j.theriogenology.2014.09.021
Article
CAS
PubMed
Google Scholar
Bisinotto RS, Ribeiro ES, Santos JE (2014) Synchronisation of ovulation for management of reproduction in dairy cows. Animal 8:151–159. https://doi.org/10.1017/S1751731114000858
Article
PubMed
Google Scholar
Cerri RL, Rutigliano HM, Chebel RC, Santos JE (2009) Period of dominance of the ovulatory follicle influences embryo quality in lactating dairy cows. Reproduction 137:813–823. https://doi.org/10.1530/REP-08-0242
Article
CAS
PubMed
Google Scholar
Chebel RC, Santos JE, Reynolds JP, Cerri RL, Juchem SO, Overton M (2004) Factors affecting conception rate after artificial insemination and pregnancy loss in lactating dairy cows. Anim Reprod Sci 84:239–255 PubMed PMID:15302368
Article
Google Scholar
Colazo MG, Ponce-Barajas P, Ambrose DJ (2013) Pregnancy per artificial insemination in lactating dairy cows subjected to 2 different intervals from presynchronization to initiation of Ovsynch protocol. J Dairy Sci 96:7640–7648. https://doi.org/10.3168/jds.2013-6750
Article
CAS
PubMed
Google Scholar
Dhami AJ, Nakrani BB, Hadiya KK, Patel JA, Shah RG (2015) Comparative efficacy of different estrus synchronization protocols on estrus induction response, fertility and plasma progesterone and biochemical profile in crossbred anestrus cows. Vet World 8:1310–1316. https://doi.org/10.14202/vetworld.2015.1310-1316
Article
CAS
PubMed
PubMed Central
Google Scholar
Dirandeh E (2014) Starting Ovsynch protocol on day 6 of first postpartum estrous cycle increased fertility in dairy cows by affecting ovarian response during heat stress. Anim Reprod Sci 149:135–140. https://doi.org/10.1016/j.anireprosci.2014.07.018
Article
CAS
PubMed
Google Scholar
Dirandeh E, Masoumi R, Didarkhah M, Samadian F, Davachi ND, Colazo MG (2018) Effect of presynchronization prior to Ovsynch on ovulatory response to first GnRH, ovulatory follicle diameter and pregnancy per AI in multiparous Holstein cows during summer in Iran. Ann. Anim. Sci 18:713–722
Article
CAS
Google Scholar
Dirandeh E, Roodbari AR, Gholizadeh M, Deldar H, Masoumi R, Kazemifard M, Colazo MG (2015) Administration of prostaglandin F2α 14 d before initiating a G6G or a G7G timed artificial insemination protocol increased circulating progesterone prior to artificial insemination and reduced pregnancy loss in multiparous Holstein cows. J Dairy Sci 98:5414–5421. https://doi.org/10.3168/jds.2015-9417
Article
CAS
PubMed
Google Scholar
Edwards JL, Bogart AN, Rispoli LA, Saxton AM, Schrick FN (2009) Developmental competence of bovine embryos from heat-stressed ova. J Dairy Sci 92:563–570. https://doi.org/10.3168/jds.2008-1495
Article
CAS
PubMed
Google Scholar
El-Zarkouny SZ, Cartmill JA, Hensley BA, Stevenson JS (2004) Pregnancy in dairy cows after synchronized ovulation regimens with or without presynchronization and progesterone. J Dairy Sci 87:1024–1037 PubMed PMID: 15259238
Article
CAS
Google Scholar
Ferguson JD, Skidmore A (2013) Reproductive performance in a select sample of dairy herds. J Dairy Sci 96:1269–1289. https://doi.org/10.3168/jds.2012-5805
Article
CAS
PubMed
Google Scholar
Ferreira RM, Ayres H, Chiaratti MR, Ferraz ML, Araújo AB, Rodrigues CA, Watanabe YF, Vireque AA, Joaquim DC, Smith LC, Meirelles FV, Baruselli PS (2011) The low fertility of repeat-breeder cows during summer heat stress is related to a low oocyte competence to develop into blastocysts. J Dairy Sci 94:2383–2392. https://doi.org/10.3168/jds.2010-3904
Article
CAS
PubMed
Google Scholar
Fricke PM, Giordano JO, Valenza A, Lopes GJ, Amundson MC, Carvalho PD (2014) Reproductive performance of lactating dairy cows managed for first service using timed artificial insemination with or without detection of estrus using an activity-monitoring system. J Dairy Sci 97:2771–2781. https://doi.org/10.3168/jds.2013-7366
Article
CAS
PubMed
Google Scholar
Galvão KN, Santos JE (2010) Factors affecting synchronization and conception rate after the Ovsynch protocol in lactating Holstein cows. Reprod Domest Anim 45:439–446. https://doi.org/10.1111/j.1439-0531.2008.01220.x
Article
CAS
PubMed
Google Scholar
Galvão KN, Santos JE, Cerri RL, Chebel RC, Rutigliano HM, Bruno RG, Bicalho RC (2007) Evaluation of methods of resynchronization for insemination in cows of unknown pregnancy status. J Dairy Sci 90:4240–4252 PubMed PMID:17699043
Article
Google Scholar
Giordano JO, Fricke PM, Cabrera VE (2013) Economics of resynchronization strategies including chemical tests to identify nonpregnant cows. J Dairy Sci 96:949–961. https://doi.org/10.3168/jds.2012-5704
Article
CAS
PubMed
Google Scholar
Giordano JO, Fricke PM, Guenther JN, Lopes GJ, Herlihy MM, Nascimento AB, Wiltbank MC (2012b) Effect of progesterone on magnitude of the luteinizing hormone surge induced by two different doses of gonadotropin-releasing hormone in lactating dairy cows. J Dairy Sci 95:3781–3793. https://doi.org/10.3168/jds.2011-5155
Article
CAS
PubMed
Google Scholar
Giordano JO, Kalantari AS, Fricke PM, Wiltbank MC, Cabrera VE (2012a) A daily herd Markov-chain model to study the reproductive and economic impact of reproductive programs combining timed artificial insemination and estrus detection. J Dairy Sci 95:5442–5460. https://doi.org/10.3168/jds.2011-4972
Article
CAS
PubMed
Google Scholar
Giordano JO, Stangaferro ML, Wijma R, Chandler WC, Watters RD (2015) Reproductive performance of dairy cows managed with a program aimed at increasing insemination of cows in estrus based on increased physical activity and fertility of timed artificial inseminations. J Dairy Sci 98:2488–2501. https://doi.org/10.3168/jds.2014-8961
Article
CAS
PubMed
Google Scholar
Giordano JO, Wiltbank MC, Guenther JN, Pawlisch R, Bas S, Cunha AP, Fricke PM (2012c) Increased fertility in lactating dairy cows resynchronized with Double-Ovsynch compared with Ovsynch initiated 32 d after timed artificial insemination. J Dairy Sci 95:639–653. https://doi.org/10.3168/jds.2011-4418
Article
CAS
PubMed
Google Scholar
Hackbart KS, Ferreira RM, Dietsche AA, Socha MT, Shaver RD, Wiltbank MC, Fricke PM (2010) Effect of dietary organic zinc, manganese, copper, and cobalt supplementation on milk production, follicular growth, embryo quality, and tissue mineral concentrations in dairy cows. J Anim Sci 88:3856–3870. https://doi.org/10.2527/jas.2010-3055
Article
CAS
PubMed
Google Scholar
Hazel AR, Heins BJ, Seykora AJ, Hansen LB (2014) Production, fertility, survival, and body measurements of Montbéliarde-sired crossbreds compared with pure Holsteins during their first 5 lactations. J Dairy Sci 97:2512–2525. https://doi.org/10.3168/jds.2013-7063
Article
CAS
PubMed
Google Scholar
Heidari F, Dirandeh E, Ansari Pirsaraei Z, Colazo MG (2017) Modifications of the G6G timed-AI protocol improved pregnancy per AI and reduced pregnancy loss in lactating dairy cows. Animal 11:2002–2009. https://doi.org/10.1017/S1751731117000520
Article
CAS
PubMed
Google Scholar
Kawate N, Itami T, Choushi T, Saitoh T, Wada T, Matsuoka K, Uenaka K, Tanaka N, Yamanaka A, Sakase M, Tamada H, Inaba T, Sawada T (2004) Improved conception in timed-artificial insemination using a progesterone-releasing intravaginal device and Ovsynch protocol in postpartum suckled Japanese Black beef cows. Theriogenology 61:399–406 PubMed PMID: 14662139
Article
CAS
Google Scholar
Kawate N, Watanabe K, Uenaka K, Takahashi M, Inaba T, Tamada H (2011) Comparison of plasma concentrations of estradiol-17β and progesterone, and conception in dairy cows with cystic ovarian diseases between Ovsynch and Ovsynch plus CIDR timed AI protocols. J Reprod Dev 57:267–272 Epub 2011 Jan 14. PubMed PMID:21242655
Article
CAS
Google Scholar
Kim IH, Suh GH, Son DS (2003) A progesterone-based timed AI protocol more effectively prevents premature estrus and incomplete luteal regression than an Ovsynch protocol in lactating Holstein cows. Theriogenology 60:809–817 PubMed PMID: 12935859
Article
CAS
Google Scholar
Knob DA, Alessio DR, Thaler Neto A, Mozzaquatro FD (2016) Reproductive performance and survival of Holstein and Holstein × Simmental crossbred cows. Trop Anim Health Prod 48:1409–1413. https://doi.org/10.1007/s11250-016-1103-9
Article
PubMed
Google Scholar
Kobayashi Y, Wakamiya K, Kohka M, Yamamoto Y, Okuda K (2013) Summer heat stress affects prostaglandin synthesis in the bovine oviduct. Reproduction 146:103–110. https://doi.org/10.1530/REP-12-0479
Article
CAS
PubMed
Google Scholar
Leroy JL, Opsomer G, Van Soom A, Goovaerts IG, Bols PE (2008) Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in danger? Part I. The importance of negative energy balance and altered corpus luteum function to the reduction of oocyte and embryo quality in high-yielding dairy cows. Reprod Domest Anim 43:612–622. https://doi.org/10.1111/j.1439-0531.2007.00960.x
Article
CAS
PubMed
Google Scholar
Lima JR, Rivera FA, Narciso CD, Oliveira R, Chebel RC, Santos JE (2009) Effect of increasing amounts of supplemental progesterone in a timed artificial insemination protocol on fertility of lactating dairy cows. J Dairy Sci 92:5436–5446. https://doi.org/10.3168/jds.2009-2134
Article
CAS
PubMed
Google Scholar
Lucy MC, Billings HJ, Butler WR, Ehnis LR, Fields MJ, Kesler DJ, Kinder JE, Mattos RC, Short RE, Thatcher WW, Wettemann RP, Yelich JV, Hafs HD (2001) Efficacy of an intravaginal progesterone insert and an injection of PGF2alpha for synchronizing estrus and shortening the interval to pregnancy in postpartum beef cows, peripubertal beef heifers, and dairy heifers. J Anim Sci 79:982–995 PubMed PMID: 11325206
Article
CAS
Google Scholar
Miller RH, Norman HD, Kuhn MT, Clay JS, Hutchison JL (2007) Voluntary waiting period and adoption of synchronized breeding in dairy herd improvement herds. J Dairy Sci 90:1594–1606 PubMed PMID: 17297133
Article
CAS
Google Scholar
Moreira F, de la Sota RL, Diaz T, Thatcher WW (2000) Effect of day of the estrous cycle at the initiation of a timed artificial insemination protocol on reproductive responses in dairy heifers. J Anim Sci 78:1568–1576 PubMed PMID: 10875641
Article
CAS
Google Scholar
Moreira F, Orlandi C, Risco CA, Mattos R, Lopes F, Thatcher WW (2001) Effects of resynchronization and bovine somatotropin on pregnancy rates to a timed artificial insemination protocol in lactating dairy cows. J Dairy Sci 84:1646–1659 PubMed PMID:11467815
Article
CAS
Google Scholar
Morton JM, Tranter WP, Mayer DG, Jonsson NN (2007) Effects of environmental heat on conception rates in lactating dairy cows: critical periods of exposure. J Dairy Sci 90:2271–2278 PubMed PMID: 17430927
Article
CAS
Google Scholar
Motavalli T, Dirandeh E, Deldar H, Colazo MG (2017) Evaluation of shortened timed-AI protocols for resynchronization of ovulation in multiparous Holstein dairy cows. Theriogenology 95:187–192. https://doi.org/10.1016/j.theriogenology.2017.03.003
Article
CAS
PubMed
Google Scholar
NRC (2001) Nutrient requirements of dairy cattle. 7th rev. ed. National Academic Science, Washing-ton, DC
Google Scholar
Pantelić V, Sretenovic L, Ostojic-Andric D, Trivunovic S, Petrovic MM, Aleksic S, Ruzic-Muslic D (2011) Heritability and genetic correlation of production and reproduction traits of Simmental cows. Afr. J. Biotechnol. 10:7117e7121
Google Scholar
Piccand V, Cutullic E, Meier S, Schori F, Kunz PL, Roche JR, Thomet P (2013) Production and reproduction of Fleckvieh, Brown Swiss, and 2 strains of Holstein-Friesian cows in a pasture-based, seasonal-calving dairy system. J Dairy Sci 96:5352–5363. https://doi.org/10.3168/jds.2012-6444
Article
CAS
PubMed
Google Scholar
Rastegarnia AAR, Anvari Savojbolghi H (2010) Effect of CIDR-based (CIDR-Synch) protocol, for timed artificial inseminations, and on the conception rate of dairy cows. J Vet Clin Res Fall. 1:243–252
Google Scholar
Rivera H, Lopez H, Fricke PM (2005) Use of intravaginal progesterone-releasing inserts in a synchronization protocol before timed AI and for synchronizing return to estrus in Holstein heifers. J Dairy Sci 88:957–968 PubMed PMID: 15738230
Article
CAS
Google Scholar
Santolaria P, López-Gatius F, García-Ispierto I, Bech-Sàbat G, Angulo E, Carretero T, Sánchez-Nadal JA, Yániz J (2010) Effects of cumulative stressful and acute variation episodes of farm climate conditions on late embryo/early fetal loss in high producing dairy cows. Int J Biometeorol 54:93–98. https://doi.org/10.1007/s00484-009-0258-8
Article
PubMed
Google Scholar
Santos JE, Narciso CD, Rivera F, Thatcher WW, Chebel RC (2010) Effect of reducing the period of follicle dominance in a timed artificial insemination protocol on reproduction of dairy cows. J Dairy Sci 93:2976–2988. https://doi.org/10.3168/jds.2009-2870
Article
CAS
PubMed
Google Scholar
Schefers JM, Weigel KA, Rawson CL, Zwald NR, Cook NB (2010) Management practices associated with conception rate and service rate of lactating Holstein cows in large, commercial dairy herds. J Dairy Sci 93:1459–1467. https://doi.org/10.3168/jds.2009-2015
Article
CAS
PubMed
Google Scholar
Shehab-El-Deen MA, Leroy JL, Fadel MS, Saleh SY, Maes D, Van Soom A (2010) Biochemical changes in the follicular fluid of the dominant follicle of high producing dairy cows exposed to heat stress early post-partum. Anim Reprod Sci 117:189–200. https://doi.org/10.1016/j.anireprosci.2009.04.013
Article
CAS
PubMed
Google Scholar
Shirasuna K, Matsumoto H, Matsuyama S, Kimura K, Bollwein H, Miyamoto A (2015) Possible role of interferon tau on the bovine corpus luteum and neutrophils during the early pregnancy. Reproduction 150:217–225. https://doi.org/10.1530/REP-15-0085
Article
CAS
PubMed
Google Scholar
Silva E, Sterry RA, Kolb D, Wiltbank MC, Fricke PM (2007) Effect of pretreatment with prostaglandin F2alpha before resynchronization of ovulation on fertility of lactating dairy cows. J Dairy Sci 90:5509–5517 PubMed PMID:18024742
Article
CAS
Google Scholar
Snijders SE, Dillon PG, O'Farrell KJ, Diskin M, Wylie AR, O'Callaghan D, Rath M, Boland MP (2001) Genetic merit for milk production and reproductive success in dairy cows. Anim Reprod Sci 65:17–31 PubMed PMID: 11182505
Article
CAS
Google Scholar
Stevenson JS (2016) Synchronization and artificial insemination strategies in dairy herds. Vet Clin North Am Food Anim Pract 32:349–364. https://doi.org/10.1016/j.cvfa.2016.01.007
Article
PubMed
Google Scholar
Toledo-Alvarado H, Cecchinato A, Bittante G (2017) Fertility traits of Holstein, Brown Swiss, Simmental, and Alpine Grey cows are differently affected by herd productivity and milk yield of individual cows. J Dairy Sci 100:8220–8231. https://doi.org/10.3168/jds.2016-12442
Article
CAS
PubMed
Google Scholar
Wheaton JE, Lamb GC (2007) Induction of cyclicity in postpartum anestrous beef cows using progesterone, GnRH and estradiol cypionate (ECP). Anim Reprod Sci 102:208–216 Epub 2006 Nov 19. PubMed PMID: 17169514
Article
CAS
Google Scholar
Wheelock JB, Rhoads RP, Vanbaale MJ, Sanders SR (2010) Baumgard LH (2010) Effects of heat stress on energetic metabolism in lactating Holstein cows. J Dairy Sci. 93:644–655. https://doi.org/10.3168/jds.2009-2295
Article
CAS
PubMed
Google Scholar
Wiltbank MC, Pursley JR (2014) The cow as an induced ovulator: timed AI after synchronization of ovulation. Theriogenology. 81(1):170–185. https://doi.org/10.1016/j.theriogenology.2013.09.017
Article
CAS
PubMed
Google Scholar