Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science. 223:701–703
Article
CAS
PubMed
Google Scholar
Kaasen I, McDougall J, Strom AR (1994) Analysis of the otsBA operon for osmoregulatory trehalose synthesis in Escherichia coli and homology of the OtsA and OtsB proteins to the yeast trehalose-6-phosphate synthase/phosphatase complex. Gene 145:9–15
Article
CAS
PubMed
Google Scholar
Elizabeth WP, Uwe H, Eleftherios M, Thomas R, Dena T (2006) Characterization and Regulation of the Trehalose Synthesis Pathway and Its Importance in the Pathogenicity of Cryptococcus neoformans. Infect Immun 74(10):5877–5887
Article
CAS
Google Scholar
Helen NM, Graham RS, Vladimir VM, Alexander SA, Richard H (2005) The OtsAB pathway is essential for trehalose biosynthesis in Mycobacterium tuberculosis. The Journal Of Biological Chemistry 280(15):14524–14529
Article
CAS
Google Scholar
Kormish JD, McGhee JD (2005) The C. elegans lethal gut-obstructed gob-1 gene is trehalose-6-phosphate phosphatase. Dev Biol. 287(1):35–47
Article
CAS
PubMed
Google Scholar
Mykola MM, Larissa DR, Miguel R, Rosalia DO, Johan MT, Patrick VD (2008) Combined Inactivation of the Candida albicans GPR1 and TPS2 Genes Results in Avirulence in a Mouse Model for Systemic Infection. Infect Immun. 76(4):1686–1694
Article
CAS
Google Scholar
Nadia AB, Ghyslaine V, Hong L, Fabrice NG, Mirjam U (2010) Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence. Infect Immun. 78(7):3007–3018
Article
CAS
Google Scholar
Popchai N, Uwe H, Julia AB, Christabel W, Methee C (2009) The trehalose synthesis pathway is an integral part of the virulence composite for Cryptococcus gattii. Infect Immun. 77(10):4584–4596
Article
CAS
Google Scholar
Susheela K, Prashant KS, Mohd S, Manisha P, Shailja MB (2012) In vitro silencing of Brugia malayi trehalose-6-phosphate phosphatase impairs embryogenesis and in vivo development of infective larvae in jirds. PLoS Negl Trop Dis. 6(8):e1770
Article
CAS
Google Scholar
Tobias S, Kristine B, Fong FH, Gitta H, Otto H (2013) Diversion of phagosome trafficking by pathogenic Rhodococcus equi depends on mycolic acid chain length. Cell Microbiol. 15(3):458–473
Article
CAS
Google Scholar
Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC (1999) Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282(7):677–686
Article
CAS
PubMed
Google Scholar
Kuni T, Cindy W, Gurdyal SB (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clinical Microbiology Reviews 18(1):81–101
Article
CAS
Google Scholar
Vivek R, Nagatoshi F, Steven AP, Michael SG (2005) Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. Journal of experimental medicine 201(4):535–543
Article
CAS
Google Scholar
Martínez EM, Martínez VE, González PP, Ros JM, Garcca PP, Arguelles JC (2009) Role of trehalose-6P phosphatase (TPS2) in stress tolerance and resistance to macrophage killing in Candida albicans. Int J Med Microbiol. 299(6):453–464
Article
CAS
Google Scholar
Serneels J, Tournu H, Van DP (2012) Tight control of trehalose content is required for efficient heat-induced cell elongation in Candida albicans. J Biol Chem. 287(44):36873–36882
Article
CAS
PubMed
PubMed Central
Google Scholar
Zaragoza O, De VC, Ponton J, Gancedo C (2002) Disruption in Candida albicans of the TPS2 gene encoding trehalose-6-phosphate phosphatase affects cell integrity and decreases infectivity. Microbiology. 148(5):1281–1290
Article
CAS
PubMed
Google Scholar
Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol. 6:109–124
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu C, Dunaway-Mariano D, Mariano PS (2017) Rational design of reversible inhibitors for trehalose 6-phosphate phosphatases. Eur J Med Chem. 128:274–286
Article
CAS
PubMed
Google Scholar
Beena J, Joji R (2010) Analysis of the essential oils of the stems, leaves and rhizomes of the medicinal plant costus pictus from southern india. International journal of pharmacy and pharmaceutical sciences issn-0975-1491 2(2):100–101
Google Scholar
Farina M, Preeti B, Neelam P (2014) 2014, Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves ofAegle marmelo. BioMed Research International Volume 497606:11
Google Scholar
Hossain MA, Kabir MJ, Salehuddin SM, Rahman SM, Das AK, Singha SK, Alam MK, Rahman A (2010) Antibacterial properties of essential oils and methanol extracts of sweet basil Ocimum basilicum occurring in Bangladesh. Pharm Biol. 48(5):504–511
Article
CAS
PubMed
Google Scholar
Kapil S, Petit C, Drago VN, Ronning DR, Sucheck SJ (2019) Synthesis and in Vitro Characterization of Trehalose-Based Inhibitors of Mycobacterial Trehalose 6-Phosphate Phosphatases. Chembiochem 20(2):260–269
Article
CAS
PubMed
Google Scholar
Singh O, Ali M (2011) Phytochemical and antifungal profiles of the seeds of carica papaya L. Indian J Pharm Sci. 73(4):447–451
CAS
PubMed
PubMed Central
Google Scholar
Tatjana S, Katarina S, Mihailo R, Gordana Z, Teodora J (2010) Composition and antimicrobial activity of the essential oil of the leaves of black currant (Ribes nigrum L.) cultivar Cacanska crna. J. Serb. Chem. Soc. 75(1):35–43
Google Scholar
QikProp (2012) version 3.5, Schrödinger. LLC, New York
Google Scholar
Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies. 1(4):337–341
Article
CAS
PubMed
Google Scholar
Sievers F, Andreas W, David D, Toby JG, Kevin K, Weizhong L, Rodrigo L, Hamish M, Michael R, Johannes S, Julie DT, Desmond GH (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7:539
Article
PubMed
PubMed Central
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al (2007) ClustalW and Clustal X version 2. Bioinformatics. 23(21):2947–2948
Article
CAS
PubMed
Google Scholar
Łopieńska-Biernat E, Molcan T, Paukszto Ł, Jastrzębski JP, Myszczyński K (2018) Modelling studies determing the mode of action of anthelmintics inhibiting in vitro trehalose-6-phosphate phosphatase (TPP) of Anisakis simplex s.l. Exp Parasitol. 184:46–56
Article
PubMed
CAS
Google Scholar
Rao KN, , Kumaran D, Seetharaman J, Bonanno JB, Burley SK, Swaminathan S. Crystal structure of trehalose-6-phosphate phosphatase-related protein: biochemical and biological implications. Protein Sci. 2006;15: 1735-1744
Article
CAS
PubMed
PubMed Central
Google Scholar
Namiko SN, Nobuhiro N, Simon M, Hajime S, Jackson D (2006) A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441:227–230
Article
CAS
Google Scholar
Marco B, Stefan B, Andrew W, Konstantin A, Gabriel S, Tobias S, Florian K, Tiziano GC, Martino B, Lorenza B (2014) Torsten S SWISS-MODEL: modeling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42(W1):W252–W258
Article
CAS
Google Scholar
Oleg T, Arthur JO (2010) Auto Dock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 2010 31(2):455–461
Google Scholar
Huey R, Morris GM, Olson AJ, Good Sell DS (2007) A semi empirical free energy force field with charge based desolvation. J of compt Chem 28:1145–1152
Article
CAS
Google Scholar
Garrett MM, David SG, Robert SH, Ruth H, William EH (1998) Automated docking using a lamarkian genetic algorithm and empirical binding free energy function. J compt Chem 19:1639–1662
Article
Google Scholar
Chaitra P, Jeyanthi GP (2011) Insilico drug designing approaches for latent autoimmune diabetes in Adults (LADA). International Journal of Pharma and Bio Sciences 2:B16–B27
Google Scholar
Dong HS, Anne R, Jaru J, Hisao Y, Rosalind K, David EW, Sung HK (2003) Crystal structure of a phosphatase with a unique substrate binding domain from Thermotoga maritima. Protein Science 12:1464–1472
Article
CAS
Google Scholar
Raghunath S, Konkimalla VB, Jagnyeswar R (2015) In silico phylogenetic analysis and molecular modelling study of 2-haloalkanoic acid dehalogenase enzymes from bacterial and fungal origin. Advances in Bioinformatics. 2016:1–10
Google Scholar
Tyagi R, Verma S, Mishra S, Srivastava M, Alam S, Khan F, Srivastava SK (2019) In Vitro and In Silico Studies of Glycyrrhetinic Acid Derivatives as Anti- Filarial Agents. Curr Top Med Chem. 19(14):1191–1200
Article
CAS
PubMed
Google Scholar
Harish BM, Devaraju KS, Gopi A, Saraswathi R, Babu RL, Chidananda Sharma S (2013) In silico binding affinity study of calcineurin inhibitors to calcineurin and its close associates. Indian Journal of Biotechnology. 12:213–217
CAS
Google Scholar
Devaraju KS, Harish BM, Saraswathi R (2014) Molecular Docking Study of Auto Inhibitory Domain Fragments to Calcineurin A. International Journal of Scientific & Engineering Research 5(1):2095–2100
Google Scholar
Yu Y, Zhang H, Zhu G (2010) Plant-type trehalose synthetic pathway in cryptosporidium and some other apicomplexans. PLoS ONE 5(9):e12593. https://doi.org/10.1371/journal.pone.0012593
Article
CAS
PubMed
PubMed Central
Google Scholar
Morais MC, Zhang W, Baker AS, Zhang G, Dunaway-Mariano D, Allen KN (2000) The crystal structure of Bacillus cereus phosphonoacetaldehyde hydrolase: Insight into catalysis of phosphorus bond cleavage and catalytic diversification within the HAD enzyme superfamily. Biochem 39:10385–10396
Article
CAS
Google Scholar
Suzuki Y, Gojobori T (1999) A method for detecting positive selection at single amino acid sites. Mol Biol Evol 16:1315–1328
Article
CAS
PubMed
Google Scholar
Cross M, Lepage R, Rajan S, Biberacher S, Young ND, Kim BN, Coster MJ, Gasser RB, Kim JS, Hofmann A (2017) Probing function and structure of trehalose-6-phosphate phosphatases from pathogenic organisms suggests distinct molecular groupings. FASEB J. 31(3):920–926
Article
CAS
PubMed
Google Scholar
Umesh HR, Ramesh KV (2016) Purification, characterization and partial structure determination of native trehalose-6-phosphate phosphatase from maize genotype EC 558706 under salt stress condition. Int j pharma and Bio Sci 7(3):(B)1263–1273