Gibbons L, Belizán JM, Lauer JA (2010) The global numbers and costs of additionally needed and unnecessary caesarean sections performed per year: overuse as a barrier to universal coverage. World Heal Rep Backgr Pap:1–31
Osterman MJK, Martin JA (2014) National vital statistics reports primary cesarean delivery rates, by state: results from the revised birth certificate, 2006 – 2012, p 63
Google Scholar
Nazneen R, Begum R, Sultana K (1970) Rising trend of caesarean section in a tertiary hospital over a decade. J Bangladesh Coll Physicians Surg. https://doi.org/10.3329/jbcps.v29i3.9432
Article
Google Scholar
A TR. Increasing trend of caesarean rates in India: evidence from NFHS-4. J Med Sci Clin Res 2017;5:26167–26176. doi: https://doi.org/10.18535/jmscr/v5i8.31.
Gosalbes MJ, Llop S, Moya A (2013) Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy 43:198–211. https://doi.org/10.1111/cea.12063
Article
PubMed
CAS
Google Scholar
Fanaro S, Chierici R, Guerrini P, Vigi V (2003) Intestinal microflora in early infancy: composition and development, pp 48–55
Google Scholar
Mackie RI, Sghir A, Gaskins HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr. https://doi.org/10.1093/ajcn/69.5.1035s
Article
CAS
Google Scholar
Schwiertz A, Gruhl B, Löbnitz M, Michel P, Radke M, Blaut M (2003) Development of the intestinal bacterial composition in hospitalized preterm infants in comparison with breast-fed, full-term infants. Pediatr Res. https://doi.org/10.1203/01.PDR.0000078274.74607.7A
Article
Google Scholar
Orrhage K, Nord CE (1999) Factors controlling the bacterial colonization of the intestine in breastfed infants. Acta Paediatr Int J Paediatr Suppl. https://doi.org/10.1111/j.1651-2227.1999.tb01300.x
Article
Google Scholar
Hobbs AJ, Mannion CA, McDonald SW, Brockway M, Tough SC (2016) The impact of caesarean section on breastfeeding initiation, duration and difficulties in the first four months postpartum. BMC Pregnancy Childbirth. https://doi.org/10.1186/s12884-016-0876-1
Grönlund MM, Grzeskowiak Ł, Isolauri E, Salminen S (2011) Influence of mother’s intestinal microbiota on gut colonization in the infant. Gut Microbes 2:226–233. https://doi.org/10.4161/gmic.2.4.16799
Article
Google Scholar
Houghteling PD, Walker WA (2015) Why is initial bacterial colonization of the intestine important to infants’ and children’s health? J Pediatr Gastroenterol Nutr. https://doi.org/10.1097/MPG.0000000000000597
Article
Google Scholar
Wang S, Hibberd ML, Pettersson S, Lee YK (2014) Enterococcus faecalis from healthy infants modulates inflammation through MAPK signaling pathways. PLoS One. https://doi.org/10.1371/journal.pone.0097523
Article
CAS
Google Scholar
Huycke MM, Sahm DF, Gilmore MS (1998) Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg Infect Dis. https://doi.org/10.3201/eid0402.980211
Article
CAS
Google Scholar
Noble CJ (1978) Carriage of group D streptococci in the human bowel. J Clin Pathol. https://doi.org/10.1136/jcp.31.12.1182
Article
CAS
Google Scholar
Belguesmia Y, Madi A, Sperandio D, Merieau A, Feuilloley M, Prévost H et al (2011) Growing insights into the safety of bacteriocins: the case of enterocin S37. Res Microbiol. https://doi.org/10.1016/j.resmic.2010.09.019
Article
CAS
Google Scholar
Drider D, Rebuffat S (2011) Prokaryotic antimicrobial peptides: from genes to applications. https://doi.org/10.1007/978-1-4419-7692-5_1
Chapter
Google Scholar
Gewolb IH, Schwalbe RS, Taciak VL, Harrison TS, Panigrahi P (1999) Stool microflora in extremely low birthweight infants. Arch Dis Child Fetal Neonatal Ed. https://doi.org/10.1136/fn.80.3.F167
Article
CAS
Google Scholar
Hufnagel M, Liese C, Loescher C, Kunze M, Proempeler H, Berner R et al (2007) Enterococcal colonization of infants in a neonatal intensive care unit: associated predictors, risk factors and seasonal patterns. BMC Infect Dis 7:107. https://doi.org/10.1186/1471-2334-7-107
Article
PubMed
PubMed Central
Google Scholar
Normann E, Fahlén A, Engstrand L, Lilja HE (2013) Intestinal microbial profiles in extremely preterm infants with and without necrotizing enterocolitis. Acta Paediatr Int J Paediatr. https://doi.org/10.1111/apa.12059
Article
Google Scholar
Björkstén B, Sepp E, Julge K, Voor T, Mikelsaar M (2001) Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol. https://doi.org/10.1067/mai.2001.118130
Article
Google Scholar
Araújo TF, Lúcia C, Fortes DL (2013) The genus enterococcus as probiotic: safety concerns. 56:457–466
Pandey PK, Siddharth J, Verma P, Bavdekar A, Patole MS, Shouche YS et al (2012) Brief communication molecular typing of fecal eukaryotic microbiota of human infants and their respective mothers. J Biosci 37:221–226. https://doi.org/10.1007/s12038-012-9197-3
Article
PubMed
Google Scholar
Bhagwat A, Nandanwar YS, Warke R, Annapure US (2019) In vitro assessment of physiological properties of enterococcus strains of human origin for possible probiotic use. Asian J Pharm Clin Res 12
Bhagwat A, Annapure US (2019) In vitro assessment of metabolic profile of Enterococcus strains of human origin. J Genet Eng Biotechnol 17:11. https://doi.org/10.1186/s43141-019-0009-0
Article
PubMed
PubMed Central
Google Scholar
Pascual LM, Daniele B, Pa C, T LB. Lactobacillus species isolated from the vagina: identification , hydrogen peroxide production and nonoxynol-9 resistance Contraception 2006;73:78–81. doi:10.1016/j.contraception.2005.06.066.
Article
CAS
Google Scholar
Chun J, Lee J-H, Jung Y (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261. https://doi.org/10.1099/ijs.0.64915-0
Article
PubMed
CAS
Google Scholar
Naser SM, Vancanneyt M, De Graef E, Devriese LA, Snauwaert C, Lefebvre K et al (2016) Enterococcus canintestini sp. nov., from faecal samples of healthy dogs:2177–2182. https://doi.org/10.1099/ijs.0.63752-0
Article
CAS
Google Scholar
Aslim B, Kilic E (2006) Some probiotic properties of vaginal lactobacilli isolated from healthy women. Jpn J Infect Dis 59:249–253
PubMed
Google Scholar
Botina SG, Sukhodolets VV (2006) Speciation in bacteria: comparison of the 16S rRNA gene for closely related Enterococcus species. 42:247–251. https://doi.org/10.1134/S1022795406030033
Article
CAS
Google Scholar
Janda JM, Abbott SL (2007) MINIREVIEW 16S rRNA Gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. 45:2761–2764. https://doi.org/10.1128/JCM.01228-07
Article
CAS
Google Scholar
Law-Brown J, Meyers PR (2003) Enterococcus phoeniculicola sp. nov., a novel member of the enterococci isolated from the uropygial gland of the Red-billed Woodhoopoe, Phoeniculus purpureus. Int J Syst Evol Microbiol 53:683–685. https://doi.org/10.1099/ijs.0.02334-0
Article
PubMed
CAS
Google Scholar
Fisher K, Phillips C (2009) The ecology, epidemiology and virulence of Enterococcus:1749–1757. https://doi.org/10.1099/mic.0.026385-0
Article
CAS
Google Scholar
Niemi RM, Ollinkangas T, Paulin L, Pavel S, Vandamme P, Karkman A et al (2016) Enterococcus rivorum sp. nov., from water of pristine brooks:2169–2173. https://doi.org/10.1099/ijs.0.038257-0
Article
CAS
Google Scholar
Naser SM, Vancanneyt M, De Graef E, Devriese LA, Snauwaert C, Lefebvre K et al (2005) Enterococcus canintestini sp. nov., from faecal samples of healthy dogs. Int J Syst Evol Microbiol 55:2177–2182. https://doi.org/10.1099/ijs.0.63752-0
Article
PubMed
CAS
Google Scholar
Tanasupawat S, Sukontasing S, Lee J (2016) Enterococcus thailandicus sp. nov., isolated from fermented sausage (‘ mum ’) in Thailand:1630–1634. https://doi.org/10.1099/ijs.0.65535-0
Article
CAS
Google Scholar
Round JL, O’Connell RM, Mazmanian SK (2010) Coordination of tolerogenic immune responses by the commensal microbiota. J Autoimmun 34. https://doi.org/10.1016/j.jaut.2009.11.007
Article
CAS
Google Scholar
Mikami K, Kimura M, Takahashi H (2012) Influence of maternal Bifidobacteria on the development of gut Bifidobacteria in infants. Pharmaceuticals 5:629–642. https://doi.org/10.3390/ph%205060629
Article
PubMed
PubMed Central
Google Scholar
Lin H-C, Su B-H, Chen A-C, Lin T-W, Tsai C-H, Yeh T-F et al (2005) Oral probiotics reduce the incidence and severity of necrotizing enterocolitis in very low birth weight infants. Pediatrics 115:1–4
Article
Google Scholar
Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I et al (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511–521
Article
Google Scholar
Saarela M, Crittenden R (2016) Gut bacteria and health foods - the European perspective gut bacteria and health foods — the European perspective. https://doi.org/10.1016/S0168-1605(02)00235-0
Article
CAS
Google Scholar
Belicova (2004) Synergic activity of selenium and probiotic bacterium Enterococcus faecium M-74 against selected mutagens in salmonella assay. Folia Microbiol (Praha) 49:301–305
Article
CAS
Google Scholar
Are A, Aronsson L, Wang S, Greicius G, Yuan KL, Gustafsson JÅ et al (2008) Enterococcus faecalis from newborn babies regulate endogenous PPARγ activity and IL-10 levels in colonic epithelial cells. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.0711734105
Article
Google Scholar
Franz CMAP, Huch M, Abriouel H, Holzapfel W, Gálvez A (2011) Enterococci as probiotics and their implications in food safety. Int J Food Microbiol. https://doi.org/10.1016/j.ijfoodmicro.2011.08.014
Article
CAS
Google Scholar
Al Atya AK, Drider-Hadiouche K, Ravallec R, Silvain A, Vachee A, Drider D (2015) Probiotic potential of Enterococcus faecalis strains isolated from meconium. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00227