Andrew RL (2001) Molecular modeling principles and applications, 2nd edn. Pearson Education Limited. https://doi.org/10.1021/ci9804241
Mark JGV (1994) Molecular modelling and drug design. Macmillan International Higher Education
Régis EEVK, Gazzali Amirah M, Muriel B-H, Cédric B, Céline F, Omar S, André A, Wahab Habibah A (2017) Molecular modelling, synthesis and biological evaluation of peptide inhibitors as anti-angiogenic agent targeting neuropilin-1 for anticancer application. J Biomol Struct Dyn 35:26–45. https://doi.org/10.1080/07391102.2015.1131196
Er-Yu LCL, Jia-Wei S, Qi W (2016) Molecular modelling of translocation of biomolecules in carbon nanotubes: method, mechanism and application. Mol Simul 42(10):827–835. https://doi.org/10.1080/08927022.2015.1107184
Article
CAS
Google Scholar
Antkowiak M (2017) Parallel exact Diagonalization approach to large molecular Nanomagnets Modelling. In: International conference on parallel processing and applied mathematics, pp 351–358
Google Scholar
Martinez MTGMAA, David H, Neil M, Mooney Kathleen M, Morgan Amy E, Proctor Carole J (2017) Modelling the molecular mechanisms of aging. Biosci Rep 37:BSR20160177. https://doi.org/10.1042/BSR20160177
Article
CAS
Google Scholar
Sandeepkumar GKS, Jens M, Lowe Edward W (2014) Computational methods in drug discovery. Pharmacol Rev 66(1):334–395. https://doi.org/10.1124/pr.112.007336
Article
CAS
Google Scholar
Xian MLZ, Yuan X, Honglin L, Cheng L, Hualiang J (2013) Computational methods for drug design and discovery: focus on China. Trends Pharmacol Sci 34:549–559. https://doi.org/10.1016/j.tips.2013.08.004
Article
CAS
Google Scholar
Divya SVS (2018) Drug discovery and development: an overview. In: Pharmaceutical medicine and translational clinical research. Elsevier, pp 19–32
Tang YD, Fei JG (2020) The computational models of drug-target interaction prediction. Protein Pept Lett 27:348–358. https://doi.org/10.2174/0929866526666190410124110
Gschwend DAG, Andrew C, Kuntz ID (1996) Molecular docking towards drug discovery. J Mol Recogn Interdiscipl J 9:175–186. https://doi.org/10.1002/(SICI)1099-1352(199603)9:2%3C175::AID-JMR260%3E3.0.CO;2-D
Article
CAS
Google Scholar
Walters WPM, Ajay A, Murcko MA (1999) Recognizing molecules with drug-like properties. Curr Opin Chem Biol 3:384–387. https://doi.org/10.1016/S1367-5931(99)80058-1
Kolb HCS, Barry K (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8:1128–1137. https://doi.org/10.1016/S1359-6446(03)02933-7
Article
CAS
PubMed
Google Scholar
Naylor LH (1999) Reporter gene technology: the future looks bright. Biochem Pharmacol 58:749–757. https://doi.org/10.1016/S0006-2952(99)00096-9
Article
CAS
PubMed
Google Scholar
Paul KSA, Sarker MN, Islam MJ (2019) The prediction of thermo physical, vibrational spectroscopy, chemical reactivity, biological properties of morpholinium borate, phosphate, chloride and bromide ionic liquid: a DFT study. Int J New Chem 6:236–253. https://doi.org/10.22034/ijnc.2019.110412.1053
Article
Google Scholar
Jahidul IM, Nuruzzaman SM, Kumer A, Paul S (2019) The evaluation and comparison of thermo-physical, chemical and biological properties of palladium(II) complexes on binuclear amine ligands with different anions by DFT study. Int J Adv Biol Biomed Res 7:318–337
Google Scholar
Jahidul MI, Kumer A, Sarker MN, Paul S, Zannat A (2019) The prediction and theoretical study for chemical reactivity, thermophysical and biological activity of morpholinium nitrate and nitrite ionic liquid crystals: a DFT study. Adv J Chem-Sec A 2:316–326. https://doi.org/10.33945/SAMI/AJCA.2019.4.5
Article
Google Scholar
Islam MJ, Kumer A, Paul S, Sarker MN (2020) The activity of alkyl groups in morpholinium cation on chemical reactivity, and biological properties of morpholinium tetrafluroborate ionic liquid using the DFT method. Chemical Methodol 4:130–142. https://doi.org/10.33945/SAMI/CHEMM.2020.2.3
Article
CAS
Google Scholar
Eric HGVDW (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2:192–204. https://doi.org/10.1038/nrd1032
Article
Google Scholar
Arnott JAP, Lobo S (2012) The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discovery 7:863–875. https://doi.org/10.1517/17460441.2012.714363
Article
CAS
Google Scholar
Matthias TRL (1996) Computational methods for biomolecular docking. Curr Opin Struct Biol 6:402–406. https://doi.org/10.1016/S0959-440X(96)80061-3
Article
Google Scholar
Bernd MKR, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489. https://doi.org/10.1006/jmbi.1996.0477
Article
Google Scholar
Hélène DBDK, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949. https://doi.org/10.1038/nrd1549
Article
CAS
Google Scholar
Morris GMG, David S, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14%3C1639::AID-JCC10%3E3.0.CO;2-B
Article
CAS
Google Scholar
Meng ECS, Brian K, Kuntz ID (1992) Automated docking with grid based energy evaluation. J Comput Chem 13:505–524. https://doi.org/10.1002/jcc.540130412
Article
CAS
Google Scholar
Alexey MOF, Lee MS, Im W, Case DA, Brooks CL III (2004) Performance comparison of generalized born and Poisson methods in the calculation of electrostatic solvation energies for protein structures. J Comput Chem 25:265–284. https://doi.org/10.1002/jcc.10378
Article
CAS
Google Scholar
Nath A, Kumer A, Khan MW (2021) Synthesis, computational and molecular docking study of some 2, 3-dihydrobenzofuran and its derivatives. J Mol Struct 1224:129225. https://doi.org/10.1016/j.molstruc.2020.129225
Article
CAS
Google Scholar
Sadia UNF, Shams A, Raza Y, Ahmed A, Rashid U, Sadiq A (2019) Isolation of dihydrobenzofuran derivatives from ethnomedicinal species Polygonum barbatum as anticancer compounds. Biol Res 52:1. https://doi.org/10.1186/s40659-018-0209-0
Article
Google Scholar
Engler TAL, Kenneth O, Iyengar R, Chai W, Agrios K (1996) Stereoselective syntheses of substituted pterocarpans with anti-HIV activity, and 5-aza-/5-thia-pterocarpan and 2-aryl-2, 3-dihydrobenzofuran analogues. Ioorgan Med Chem 4:1755–1769. https://doi.org/10.1016/0968-0896(96)00192-7
Article
CAS
Google Scholar
Liu Q-BH, Xiao-Xiao, Bai M, Chang X-B, Yan X-J, Zhu T, Zhao W, Peng Y, Song S-J (2014) Antioxidant and anti-inflammatory active dihydrobenzofuran neolignans from the seeds of Prunus tomentosa. J Agric Food Chem 62:7796–7803. https://doi.org/10.1021/jf502171z
Article
CAS
PubMed
Google Scholar
Tripathi RPY, Kumar A, Ajay A, Bisht SS, Chaturvedi V, Sinha SK (2010) Application of Huisgen (3+ 2) cycloaddition reaction: synthesis of 1-(2, 3-dihydrobenzofuran-2-yl-methyl [1, 2, 3]-) triazoles and their antitubercular evaluations. Eur J Med Chem 45:142–148. https://doi.org/10.1016/j.ejmech.2009.09.036
Article
CAS
PubMed
Google Scholar
Marcel FAGB, Kaiser M, Wünsch B, Schmidt TJ (2020) (±)-trans-2-phenyl-2, 3-dihydrobenzofurans as leishmanicidal agents: synthesis, in vitro evaluation and SAR analysis. Eur J Med Chem 205:112493. https://doi.org/10.1016/j.ejmech.2020.112493
Article
CAS
Google Scholar
Jianhua PJQ, Qi H, Jin Y, Shen Q, Wu Y, Song H, Zhang W (2013) Synthesis and antiproliferative activity of new polyoxo 2-benzyl-2, 3-dihydrobenzofurans and their related compounds. Lett Drug Des Discov 10:886–894. https://doi.org/10.2174/15701808113109990011
Article
CAS
Google Scholar
de Castro Oliveira LGB, Moreira L, Alves d M, Muálem M, Amorim LV, Sobrinho J, Costa EP, de Carvalho CES, Rodrigues d F, Antonio K, Arcanjo DDR, Citó d GL, Maria A, Carvalho DA, Aécio F (2017) In vitro effects of the neolignan 2, 3- Dihydrobenzofuran against Leishmania amazonensis. Basic Clin Pharmacol Toxicol 120:52–58. https://doi.org/10.1111/bcpt.12639
Article
CAS
PubMed
Google Scholar
Carmela SSDM, Cardullo N, Riccio R, Fischer K, Pergola C, Koeberle A, Werz O, Chalal M, Vervandier-Fasseur (2016) Dominique, 2, 3-Dihydrobenzofuran privileged structures as new bioinspired lead compounds for the design of mPGES-1 inhibitors. Bioorg Med Chem 24:820–826. https://doi.org/10.1016/j.bmc.2016.01.002
Article
CAS
Google Scholar
Frisch GWTMJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V (2016) Gaussian, 16th edn. Gaussian, Inc, Wallingford
Google Scholar
Kay Sorimachi AJJ, Le Gal-Coëffet M-F, Williamson G, Archer DB, Williamson MP (1996) Solution structure of the granular starch binding domain of glucoamylase from Aspergillus nigerby nuclear magnetic resonance spectroscopy. J Mol Biol 259:970–998. https://doi.org/10.1006/jmbi.1996.0374
Article
Google Scholar
Abdelhakim Ahmed-Belkacem LC, Ahnou N, Nevers Q, Gelin M, Bessin Y, Brillet R, Cala O, Douguet D, Bourguet W, Krimm I, Pawlotsky J-M, Guichou JF (2016) Fragment-based discovery of a new family of non-peptidic small-molecule cyclophilin inhibitors with potent antiviral activities. Nat Commun 7:12777. https://doi.org/10.1038/ncomms12777
Article
CAS
PubMed
PubMed Central
Google Scholar
Egor Svidritskiy GD, Loveland AB, Xu C, Korostelev AA (2019) Extensive ribosome and RF2 rearrangements during translation termination. eLife. https://doi.org/10.7554/eLife.46850.001
Song J, Gao X, Galán J (2013) Structure and function of the salmonella Typhi chimaeric A2B5 typhoid toxin. Nature 499:350–354. https://doi.org/10.1038/nature12377
Article
CAS
PubMed
PubMed Central
Google Scholar
Gamblin LFHSJ, Russell RJ, Stevens DJ, Xiao B, Ha Y, Vasisht N, Steinhauer DA, Daniels RS (2004) The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303:1838–1842. https://doi.org/10.1126/science.1093155
Article
PubMed
Google Scholar
Parsy F-RAC, Brandt G, Caillet C, Cappelle S, Chaves D, Convard T, Derock M, Gloux D, Griffon Y, Lallos L, Leroy F, Liuzzi M, Loi A-G, Moulat L, Musiu C, Rahali H, Roques V, Seifer M, Standring D, Surleraux D (2014) Structure-based design of a novel series of azetidine inhibitors of the hepatitis C virus NS3/4A serine protease. Bioorg Med Chem Lett 24:4444–4449. https://doi.org/10.1016/j.bmcl.2014.08.002
Article
CAS
PubMed
Google Scholar
Olivier AMD, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):42717. https://doi.org/10.1038/srep42717
Article
Google Scholar
DeLano WL (2002) The PyMOL user’s manualhttp://www.pymol.org
Google Scholar
Trott OO, Arthur J (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334
Article
CAS
PubMed
PubMed Central
Google Scholar
Inc AS (2013) Discovery studio modeling environment, release 4.0
Google Scholar
Weihua FLC, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. ACS Publications
Tom EDK, Nabuurs SB, Finkelstein A, Vriend G (2004) Making optimal use of empirical energy functions: force field parameterization in crystal space. Proteins Struct Function Bioinform 57:678–683. https://doi.org/10.1002/prot.20251
Skjevik ÅAM, Benjamin D, Dickson CJ, Teigen K, Walker RC, Gould IR (2015) All-atom lipid bilayer self-assembly with the AMBER and CHARMM lipid force fields. Chem Commun 51:4402–4405. https://doi.org/10.1039/C4CC09584G
Franco CALL, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
Mallika AKTS, Shukla HS, Roy BK (2015) In silico profiling of the potentiality of curcumin and conventional drugs for CagA oncoprotein inactivation. Arch Pharm 348:548–555. https://doi.org/10.1002/ardp.201400438
Article
CAS
Google Scholar
SS KNM, Hp S, Ranjan S, Sharma CS (2018) Computational analysis of pharmacokinetic, bioactivity and toxicity parameters of some selected oral-hypoglycaemic agents Shashank Shekhar. Int J Pharm Sci Drug Res 10:278–282
Google Scholar
Feixiong Cheng WL, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012) admetSAR: a comprehensive source and free tool for evaluating chemical ADMET properties. J Chem Inf Model 52:3099–3105. https://doi.org/10.1021/ci300367a
Article
CAS
PubMed
Google Scholar
Hongbin Yang CL, Sun L, Li J, Cai Y, Wang Z, Li W, Liu G, Tang Y (2018) admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 35:1067–1069. https://doi.org/10.1093/bioinformatics/bty707
Article
CAS
Google Scholar
Cheng F et al (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. ACS Publications
Kim MT, Sedykh A, Chakravarti SK, Saiakhov RD, Zhu H (2014) Critical evaluation of human oral bioavailability for pharmaceutical drugs by using various cheminformatics approaches. Pharm Res 31:1002–1014. https://doi.org/10.1007/s11095-013-1222-1
AHE PHH, Yoon YM, Kim HI, Yoo SY, Lee KW, Lee YS (2019) Antiproliferative 3-deoxysphingomyelin analogs: design, synthesis, biological evaluation and molecular docking of pyrrolidine-based 3-deoxysphingomyelin analogs as anticancer agents. Bioorg Chem Mar 84:444–455. https://doi.org/10.1016/j.bioorg.2018.11.040 Epub 2018 Nov 26. PMID: 30576908
Elkamhawy A PS, AHE H, Lee YS, Roh E (2017) Hit discovery of 4-amino-N-(4-(3-(trifluoromethyl)phenoxy)pyrimidin-5-yl)benzamide: a novel EGFR inhibitor from a designed small library. J Bioorg Chem 75:393–405. https://doi.org/10.1016/j.bioorg.2017.10.009 Epub 2017 Nov 5. PMID: 29102722
Shityakov S, Förster C (2014) In silico predictive model to determine vector-mediated transport properties for the blood–brain barrier choline transporter. Adv Appl Bioinforma Chem 7:23–36. https://doi.org/10.2147/AABC.S63749
Baxter CAM, Christopher W, Clark DE, Westhead DR, Eldridge MD (1998) Flexible docking using Tabu search and an empirical estimate of binding affinity. Proteins Struct Function Bioinform 33:367–382
Article
CAS
Google Scholar
Foloppe, R NH (2006) Towards predictive ligand design with free-energy based computational methods? Curr Med Chem 13:3583–3608. https://doi.org/10.2174/092986706779026165
Article
Google Scholar
Meng X-YZ, Xing H, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comp-Aided Drug Des 7(2):146–157. https://doi.org/10.2174/157340911795677602
Article
CAS
Google Scholar
Ferreira LGDS, Ricardo N, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 20(7):13384–13421. https://doi.org/10.3390/molecules200713384
Article
CAS
PubMed
PubMed Central
Google Scholar