Abdulmumin U et al (2017) Nutritional and anti-nutritional composition of monkey orange (Strychnos innocua Del) fruit seeds grown in Zuru, Nigeria. Afr J Food Sci Technol 8(4):56–62
Google Scholar
Adams D, Midel MJ, Dastgir J, Flora C, Molinari RJ, Heerinckx F, Endemann S, Atwal P, Milner P, Shchpinor MS (2020) Treatment of infantile neuroaxonal dystrophy with RT001: a di-deuterated ethyl ester of linoleic acid: report of two cases. JIMD Rep 54(1):54–60
Article
Google Scholar
Al-Wathnani H, Ismet A, Tahmaz RR, Al-Dayel TH, Bakir MA (2012) Bioactivity of natural compounds isolated from cyanobacteria and green algae against human pathogenic bacteria and yeast. J Med Plants Res 6(18):3425–3433. https://doi.org/10.5897/JMPR11.1746
Article
CAS
Google Scholar
Anonymous (2007) Ecocrop: Stychnos innocua. Food and agriculture organization of the UN. Retrieved from http://ecocrop.fao.org/ecocrop/srv/en/cropView?id=1013
Asuzu CU, Nwosu MO (2020) Studies of the wood of some Nigeria alkaloid-rich Strychnos species. J Hortic For 12(2):57–62
Article
Google Scholar
Bello MO, Olawore NO, Falade OS, Adewusi SRA (2007) Studies on the chemical compositions and AntiNutrients of some lesser known fruits. Biochem Indian J 1(2):88–97
CAS
Google Scholar
Gescher A, Gibson NW, Hickman JA, Langdon SP, Ross D, Atassi G (1982) N-methylformamide: antitumour activity and metabolism in mice. Br J Cancer 45(6):843–850
Article
CAS
Google Scholar
Hirotani H, Ohigashi M, Kobayashi K, Koshimizu K, Takahashi E (1991) Inactivation of T5 phage by cis-vaccenic acid, an antivirus substance from Rhodopseudomonas capsulate, and by unsaturated fatty acids and related alcohols. FEMS Microbiol Lett 77(1):13–17. https://doi.org/10.1111/j.1574-6968.1991.tb04314.x
Article
CAS
Google Scholar
Hoet S, Pieters L, Muccioli GG, Habib-Jiwan J, Opperdoes FR, Quetin-Leclercq J (2007) Antitrypanosomal activity of triterpenoids and sterols from the leaves of Strychnos spinosa and related compounds. J Nat Prod 70:1360–1363. https://doi.org/10.1021/np070038q
Article
PubMed
CAS
Google Scholar
Hoet S, Stevigny C, Herent M, Quetin-Leclercq J (2006) Antitrypanosomal compounds from the leaf essential oil of Strychnos spinosa. Planta Med 72:480–482. https://doi.org/10.1055/s-2005-916255
Article
PubMed
CAS
Google Scholar
Hongxiang S, Cuirong S, Yuanjian P (2005) Cytotoxic activity and constituents of the volatile oil from the roots of Patrinia scabra Bunge. Chem Biodivers 2(10):1351–1357. https://doi.org/10.1002/cbdv.200590107
Article
Google Scholar
Igbal H, Moneebur RK, Riazullah ZM, Naeem KFA, Zahoor U (2011) Phytochemical screening and antimicrobial activities of selected medicinal plants of Khyber Pakhtunkhwa, Pakistan. Afr J Pharm Pharmacol 5(6):746–750
Article
Google Scholar
Krishnaveni M, Kalaivani M, Banu CR, Kumari GK (2015) GC-MS/MS study of Parthenium hysterophorus L(N. Am) stem, antimicrobial activity. Res J Pharmacy Technol 8(5):517–519
Article
Google Scholar
Lee SW, Wendy W, Julius YFS, Desy FS (2011) Characterization of antimicrobial, antioxidant, anticancer properties and chemical composition of Michelia champaca seed and flower extracts. Stamford J Pharmaceut Sci 4(1):19–24. https://doi.org/10.3329/sjps.v4i1.8862
Article
Google Scholar
Leeming JP et al (1986) The in vitro antimicrobial effect of azelaic acid. Br J Dermatol 115(5):551–556
Article
CAS
Google Scholar
Orwa CA, Mutua KR, Jamnadass R, Anthony S (2009) Agroforestree database: a tree reference and selection guide version 4.0. Retrieved from http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp
Ory SJ et al (1993) The effect of a biodegradable contraceptive capsule (capronor) containing levonogetrel on gonadotropin, estrogen, and progesterone levels. Am J Obstet Gyneacol 145(5):600–605
Article
Google Scholar
Paula D, Anna P, Magdalena N, Natalia T (2018) The use of azelaic acid in selected dermatological disorders. Med Rodz 21(4):307–314
Google Scholar
Ruffo CK, Birnie A, Tengnas B (2002) Edible wild plants of Tanzania. Regional Land Management Unit; Nairobi
Ruth TN, Anita RL, Loveness KN, Vincenzo F, Ruud V (2017) Local processing and nutritional composition of indigenous fruits: the case of monkey orange (Strychnos spp.) from Southern Africa. Food Rev Int 33(2):123–142
Article
CAS
Google Scholar
Saghir M (1997) Rapid in vivo hydrolysis of fatty acid ethyl esters, toxic nonoxidative ethanol metabolites. Am J Physiol 273:184–190
Google Scholar
Seth SD, Sharma B (2004) Medicinal plants in India. Indian J Med Res 120:9–11
PubMed
CAS
Google Scholar
Singh G, Kapoor IPS, Singh P, Carola S et al (2010) Comparative study of chemical composition and antioxidant activity of fresh and dry rhizomes of turmeric (Curcuma longa Linn.). Food Chem Toxicol 48(4):1026–1031. https://doi.org/10.1016/j.fct.2010.01.015
Article
PubMed
CAS
Google Scholar
Vasquez-Ocmin P, Cojean S, Rengifo C, Suyyagh-Albouz S, Guerra CAA, Pomel S, Maciuk A (2017) Antiprotozoal activity of medicinal plants used by Iquitos-Nauta road communities in Loreto (Peru). J Ethnopharmacol. https://doi.org/10.1016/j.jep.2017.08.039
Article
PubMed
Google Scholar
WHO (1996) Annex II. Guidelines for the assessment of herbal medicines (WHO Technical Report Series No. 863), Geneva
Yi Y, Lu C, Hu X, Ling F, Wang G (2012) Antiprotozoal activity of medicinal plants against Ichthyophthirius multifiliis in goldfish (Carassius auratus). Parasitol Res 111:1771–1778. https://doi.org/10.1007/s00436-012-3022-7
Article
PubMed
Google Scholar
Yu FR, Lian XZ, Guo HY, McGuire PM, Li RD, Wang R, Yu FH (2005) Isolation and characterization of methyl esters and derivatives from Euphorbia kansui (Euphorbiaceae) and their inhibitory effects on the human SGC-7901 cells. J Pharm Pharm Sci 8:528–535
PubMed
CAS
Google Scholar
Zacek P, Blanka K, Sobotnik J, Hovorka O, Ptacek V, Coppee A, Verheggen F, Irena V (2009) Comparison of age-dependent quantitative changes in the male labial gland secretion of Bombus terrestris and Bombus lucorum. J Chem Ecol 35(6):698–705
Article
CAS
Google Scholar
Zhikun W, Juran L, Jian G, Shanxin Y (2000) Niobic acid catalysed synthesis of diisooctyl phthalate. Adv Fine Petrochem 7:18–19
Google Scholar