Aboitiz N, Vila-Perelló M, Groves P, Asensio JL, Andreu D, Cañada FJ, Jimenez-Barbero J (2004) NMR and modeling studies of protein–carbohydrate interactions: synthesis, three-dimensional structure, and recognition properties of a minimum hevein domain with binding affinity for chitooligosaccharides. Chem BioChem 5(9):1245–1255
CAS
Google Scholar
Archer B (1960) The proteins of Hevea brasiliensis latex. 4. Isolation and characterization of crystalline hevein. Biochem J 75(2):236–240
Article
CAS
PubMed
PubMed Central
Google Scholar
Asensio JL, Cañada FJ, Siebert H-C, Laynez J, Poveda A, Nieto PM et al (2000) Structural basis for chitin recognition by defense proteins: GlcNAc residues are bound in a multivalent fashion by extended binding sites in hevein domains. Chem Biol 7(7):529–543
Article
CAS
PubMed
Google Scholar
Beintema JJ (1994) Structural features of plant chitinases and chitin-binding proteins. FEBS Lett 350(2–3):159–163
Article
CAS
PubMed
Google Scholar
Berecz B, Mills EN, Tamas L, Lang F, Shewry PR, Mackie AR (2010) Structural stability and surface activity of sunflower 2S albumins and nonspecific lipid transfer protein. J Agric Food Chem 58(10):6490–6497. https://doi.org/10.1021/jf100554d
Article
CAS
PubMed
Google Scholar
Bernhard WR, Thoma S, Botella J, Somerville CR (1991) Isolation of a cDNA clone for spinach lipid transfer protein and evidence that the protein is synthesized by the secretory pathway. Plant Physiol 95(1):164–170. https://doi.org/10.1104/pp.95.1.164
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanco C, Carrillo T, Castillo R, Quiralte J, Cuevas M (1994) Latex allergy: clinical features and cross-reactivity with fruits. Ann Allergy 73(4):309–314
CAS
PubMed
Google Scholar
Blanco C, Diaz-Perales A, Collada C, Sánchez-Monge R, Aragoncillo C, Castillo R et al (1999) Class I chitinases as potential panallergens involved in the latex-fruit syndrome. J Allergy Clin Immunol 103(3):507–513
Article
CAS
PubMed
Google Scholar
Blein JP, Coutos-Thevenot P, Marion D, Ponchet M (2002) From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends Plant Sci 7(7):293–296. https://doi.org/10.1016/s1360-1385(02)02284-7
Article
CAS
PubMed
Google Scholar
Bogdanov IV, Shenkarev ZO, Finkina EI, Melnikova DN, Rumynskiy EI, Arseniev AS, Ovchinnikova TV (2016) A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties. BMC Plant Biol 16(1):107
Article
PubMed
PubMed Central
CAS
Google Scholar
Broekaert I, Lee H-I, Kush A, Chua N-H, Raikhel N (1990) Wound-induced accumulation of mRNA containing a hevein sequence in laticifers of rubber tree (Hevea brasiliensis). Proc Natl Acad Sci 87(19):7633–7637
Article
CAS
PubMed
PubMed Central
Google Scholar
Broekaert WF, Marien W, Terras FR, De Bolle MF, Proost P, Van Damme J et al (1992) Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry 31(17):4308–4314
Article
CAS
PubMed
Google Scholar
Broekaert WF, Van Parijs J, Leyns F, Joos H, Peumans WJ (1989) A chitin-binding lectin from stinging nettle rhizomes with antifungal properties. Science 245(4922):1100–1102
Article
CAS
PubMed
Google Scholar
Bublin M, Eiwegger T, Breiteneder H (2014) Do lipids influence the allergic sensitization process? J Allergy Clin Immunol 134(3):521–529
Article
CAS
PubMed
PubMed Central
Google Scholar
Carvalho Ade O, Gomes VM (2007) Role of plant lipid transfer proteins in plant cell physiology-a concise review. Peptides 28(5):1144–1153. https://doi.org/10.1016/j.peptides.2007.03.004
Article
CAS
PubMed
Google Scholar
Chae K, Kieslich CA, Morikis D, Kim S-C, Lord EM (2009) A gain-of-function mutation of Arabidopsis lipid transfer protein 5 disturbs pollen tube tip growth and fertilization. Plant Cell 21(12):3902–3914
Article
CAS
PubMed
PubMed Central
Google Scholar
Chávez MI, Vila-Perelló M, Cañada FJ, Andreu D, Jiménez-Barbero J (2010) Effect of a serine-to-aspartate replacement on the recognition of chitin oligosaccharides by truncated hevein. A 3D view by using NMR. Carbohydr Res 345(10):1461–1468
Article
PubMed
CAS
Google Scholar
Da Silva P, Landon C, Industri B, Marais A, Marion D, Ponchet M, Vovelle F (2005) Solution structure of a tobacco lipid transfer protein exhibiting new biophysical and biological features. Proteins 59(2):356–367. https://doi.org/10.1002/prot.20405
Article
CAS
PubMed
Google Scholar
De Bolle MF, Osborn RW, Goderis IJ, Noe L, Acland D, Hart CA et al (1996) Antimicrobial peptides from Mirabilis jalapa and Amaranthus caudatus: expression, processing, localization and biological activity in transgenic tobacco. Plant Mol Biol 31(5):993–1008
Article
PubMed
Google Scholar
Debono A, Yeats TH, Rose JK, Bird D, Jetter R, Kunst L, Samuels L (2009) Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell 21(4):1230–1238. https://doi.org/10.1105/tpc.108.064451
Article
CAS
PubMed
PubMed Central
Google Scholar
Diaz-Perales A, Collada C, Blanco C, Sanchez-Monge R, Carrillo T, Aragoncillo C, Salcedo G (1999) Cross-reactions in the latex-fruit syndrome: a relevant role of chitinases but not of complex asparagine-linked glycans. J Allergy Clin Immunol 104(3):681–687
Article
CAS
PubMed
Google Scholar
Dubovskii PV, Vassilevski AA, Slavokhotova AA, Odintsova TI, Grishin EV, Egorov TA, Arseniev AS (2011) Solution structure of a defense peptide from wheat with a 10-cysteine motif. Biochem Biophys Res Commun 411(1):14–18
Article
CAS
PubMed
Google Scholar
Duwadi D, Shrestha A, Yilma B, Kozlovski I, Sa-Eed M, Dahal N, Jukosky J (2018) Identification and screening of potent antimicrobial peptides in arthropod genomes. Peptides 103:26–30
Article
CAS
PubMed
PubMed Central
Google Scholar
Edstam MM, Blomqvist K, Eklof A, Wennergren U, Edqvist J (2013) Coexpression patterns indicate that GPI-anchored non-specific lipid transfer proteins are involved in accumulation of cuticular wax, suberin and sporopollenin. Plant Mol Biol 83(6):625–649. https://doi.org/10.1007/s11103-013-0113-5
Article
CAS
PubMed
Google Scholar
Edstam MM, Laurila M, Hoglund A, Raman A, Dahlstrom KM, Salminen TA et al (2014) Characterization of the GPI-anchored lipid transfer proteins in the moss Physcomitrella patens. Plant Physiol Biochem 75:55–69. https://doi.org/10.1016/j.plaphy.2013.12.001
Article
CAS
PubMed
Google Scholar
Edstam MM, Viitanen L, Salminen TA, Edqvist J (2011) Evolutionary history of the non-specific lipid transfer proteins. Mol Plant 4(6):947–964. https://doi.org/10.1093/mp/ssr019
Article
CAS
PubMed
Google Scholar
Egorov T, Odintsova T (2012) Defense peptides of plant immune system. Bioorg Khim 38(1):7
PubMed
Google Scholar
Fernandez de Caleya R, Gonzalez-Pascual B, Garcia-Olmedo F, Carbonero P (1972) Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol 23(5):998–1000
Article
CAS
PubMed
Google Scholar
Fujimura M, Minami Y, Watanabe K, Tadera K (2003) Purification, characterization, and sequencing of a novel type of antimicrobial peptides, Fa-AMP1 and Fa-AMP2, from seeds of buckwheat (Fagopyrum esculentum Moench.). Biosci Biotechnol Biochem 67(8):1636–1642
Article
CAS
PubMed
Google Scholar
Galelli A, Truffa-Bachi P (1993) Urtica dioica agglutinin. A superantigenic lectin from stinging nettle rhizome. J Immunol 151(4):1821–1831
CAS
PubMed
Google Scholar
Gangadhar BH, Sajeesh K, Venkatesh J, Baskar V, Abhinandan K, Yu JW et al (2016) Enhanced tolerance of transgenic potato plants over-expressing non-specific lipid transfer protein-1 (StnsLTP1) against multiple abiotic stresses. Front Plant Sci 7:1228
Article
PubMed
PubMed Central
Google Scholar
Garcia-Olmedo F, Molina A, Alamillo JM, Rodriguez-Palenzuela P (1998) Plant defense peptides. Biopolymers 47(6):479–491. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6%3c479::AID-BIP6%3e3.0.CO;2-K
Article
CAS
PubMed
Google Scholar
Gidrol X, Chrestin H, Tan H-L, Kush A (1994) Hevein, a lectin-like protein from Hevea brasiliensis (rubber tree) is involved in the coagulation of latex. J Biol Chem 269(12):9278–9283
Article
CAS
PubMed
Google Scholar
Giordani T, Buti M, Natali L, Pugliesi C, Cattonaro F, Morgante M, Cavallini A (2011) An analysis of sequence variability in eight genes putatively involved in drought response in sunflower (Helianthus annuus L.). Theor Appl Genet 122(6):1039–1049. https://doi.org/10.1007/s00122-010-1509-0
Article
CAS
PubMed
Google Scholar
Gomez-Casado C, Diaz-Perales A (2016) Allergen-associated immunomodulators: modifying allergy outcome. Arch Immunol Ther Exp (Warsz) 64(5):339–347. https://doi.org/10.1007/s00005-016-0401-2
Article
Google Scholar
Guzman-Rodriguez JJ, Ochoa-Zarzosa A, Lopez-Gomez R, Lopez-Meza JE (2015) Plant antimicrobial peptides as potential anticancer agents. Biomed Res Int 2015:735087. https://doi.org/10.1155/2015/735087
Article
CAS
PubMed
PubMed Central
Google Scholar
Han GW, Lee JY, Song HK, Chang C, Min K, Moon J et al (2001) Structural basis of non-specific lipid binding in maize lipid-transfer protein complexes revealed by high-resolution X-ray crystallography. J Mol Biol 308(2):263–278. https://doi.org/10.1006/jmbi.2001.4559
Article
CAS
PubMed
Google Scholar
Harata K, Muraki M (2000) Crystal structures of Urtica dioica agglutinin and its complex with tri-N-acetylchitotriose. J Mol Biol 297(3):673–681
Article
CAS
PubMed
Google Scholar
Huang R-H, Xiang Y, Liu X-Z, Zhang Y, Hu Z, Wang D-C (2002) Two novel antifungal peptides distinct with a five-disulfide motif from the bark of Eucommia ulmoides Oliv. FEBS Lett 521(1–3):87–90
Article
CAS
PubMed
Google Scholar
Huang R-H, Xiang Y, Tu G-Z, Zhang Y, Wang D-C (2004) Solution structure of Eucommia antifungal peptide: a novel structural model distinct with a five-disulfide motif. Biochemistry 43(20):6005–6012
Article
CAS
PubMed
Google Scholar
Huang X, Xie W-J, Gong Z-Z (2000) Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba. FEBS Lett 478(1–2):123–126
Article
CAS
PubMed
Google Scholar
Iseli B, Boller T, Neuhaus J-M (1993) The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiol 103(1):221–226
Article
CAS
PubMed
PubMed Central
Google Scholar
James DJ, Passey AJ, Barbara DJ, Bevan M (1989) Genetic transformation of apple (Malus pumila Mill) using a disarmed Ti-binary vector. Plant Cell Rep 7(8):658–661
CAS
PubMed
Google Scholar
Ji H, Gheysen G, Ullah C, Verbeek R, Shang C, De Vleesschauwer D et al (2015) The role of thionins in rice defence against root pathogens. Mol Plant Pathol 16(8):870–881. https://doi.org/10.1111/mpp.12246
Article
CAS
PubMed
PubMed Central
Google Scholar
Jimenez-Barbero J, Cañada FJ, Asensio JL, Aboitiz N, Vidal P, Canales A et al (2006) Hevein domains: an attractive model to study carbohydrate–protein interactions at atomic resolution. Adv Carbohydr Chem Biochem 60:303–354
Article
CAS
PubMed
Google Scholar
Joly V, Matton DP (2015) KAPPA, a simple algorithm for discovery and clustering of proteins defined by a key amino acid pattern: a case study of the cysteine-rich proteins. Bioinformatics 31(11):1716–1723. https://doi.org/10.1093/bioinformatics/btv047
Article
CAS
PubMed
Google Scholar
Jose-Estanyol M, Gomis-Ruth FX, Puigdomenech P (2004) The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol Biochem 42(5):355–365. https://doi.org/10.1016/j.plaphy.2004.03.009
Article
CAS
PubMed
Google Scholar
Jung HW, Kim W, Hwang BK (2003) Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic, and environmental stresses. Plant Cell Environ 26(6):915–928. https://doi.org/10.1046/j.1365-3040.2003.01024.x
Article
CAS
PubMed
Google Scholar
Kader JC (1975) Proteins and the intracellular exchange of lipids. I. Stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolated from potato tuber. Biochim Biophys Acta 380(1):31–44
Article
CAS
PubMed
Google Scholar
Kader JC, Julienne M, Vergnolle C (1984) Purification and characterization of a spinach-leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts. Eur J Biochem 139(2):411–416. https://doi.org/10.1111/j.1432-1033.1984.tb08020.x
Article
CAS
PubMed
Google Scholar
Kalla R, Shimamoto K, Potter R, Nielsen PS, Linnestad C, Olsen OA (1994) The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice. Plant J 6(6):849–860. https://doi.org/10.1046/j.1365-313x.1994.6060849.x
Article
CAS
PubMed
Google Scholar
Kim H, Lee SB, Kim HJ, Min MK, Hwang I, Suh MC (2012) Characterization of -anchored lipid transfer protein 2 (LTPG2) and overlapping function between LTPG/LTPG1 and LTPG2 in cuticular wax export or accumulation in Arabidopsis thaliana. Plant Cell Physiol 53(8):1391–1403. https://doi.org/10.1093/pcp/pcs083
Article
CAS
PubMed
Google Scholar
Kini SG, Nguyen PQ, Weissbach S, Mallagaray A, Shin J, Yoon HS, Tam JP (2015) Studies on the chitin binding property of novel cysteine-rich peptides from Alternanthera sessilis. Biochemistry 54(43):6639–6649
Article
CAS
PubMed
Google Scholar
Kini SG, Wong KH, Tan WL, Xiao T, Tam JP (2017) Morintides: cargo-free chitin-binding peptides from Moringa oleifera. BMC Plant Biol 17(1):68
Article
PubMed
PubMed Central
CAS
Google Scholar
Koo JC, Chun HJ, Park HC, Kim MC, Koo YD, Koo SC et al (2002) Over-expression of a seed specific hevein-like antimicrobial peptide from Pharbitis nil enhances resistance to a fungal pathogen in transgenic tobacco plants. Plant Mol Biol 50(3):441–452
Article
CAS
PubMed
Google Scholar
Koo JC, Lee SY, Chun HJ, Cheong YH, Choi JS, Kawabata S et al (1998) Two hevein homologs isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity. Protein Struct Mol Enzymol 1382(1):80–90
Article
CAS
Google Scholar
Kristensen AK, Brunstedt J, Nielsen KK, Roepstorff P, Mikkelsen JD (2000) Characterization of a new antifungal non-specific lipid transfer protein (nsLTP) from sugar beet leaves. Plant Sci 155(1):31–40. https://doi.org/10.1016/s0168-9452(00)00190-4
Article
CAS
PubMed
Google Scholar
Lagier F, Vervloet D, Lhermet I, Poyen D, Charpin D (1992) Prevalence of latex allergy in operating room nurses. J Allergy Clin Immunol 90(3):319–322
Article
CAS
PubMed
Google Scholar
Lee H, Broekaert W, Raikhel N, Lee H (1991) Co-and post-translational processing of the hevein preproprotein of latex of the rubber tree (Hevea brasiliensis). J Biol Chem 266(24):15944–15948
Article
CAS
PubMed
Google Scholar
Lee H, Raikhel N (1995) Prohevein is poorly processed but shows enhanced resistance to a chitin-binding fungus in transgenic tomato plants. Br J Medical Biol Res 28(7):743
CAS
Google Scholar
Lee OS, Lee B, Park N, Koo JC, Kim YH, Karigar C et al (2003) Pn-AMPs, the hevein-like proteins from Pharbitis nil confers disease resistance against phytopathogenic fungi in tomato Lycopersicum esculentum. Phytochemistry 62(7):1073–1079
Article
CAS
PubMed
Google Scholar
Lee SB, Go YS, Bae HJ, Park JH, Cho SH, Cho HJ et al (2009) Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola. Plant Physiol 150(1):42–54. https://doi.org/10.1104/pp.109.137745
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S-S, Claeson P (2003) Cys/Gly-rich proteins with a putative single chitin-binding domain from oat (Avena sativa) seeds. Phytochemistry 63(3):249–255
Article
CAS
PubMed
Google Scholar
Liapkova N, Loskutova N, Maĭsurian A, Mazin V, Korableva N, Platonova T et al (2001) Isolation of genetically modified potato plant containing the gene of defensive peptide from Am. Prikl Biokhim Mikrobiol 37(3):349–354
CAS
PubMed
Google Scholar
Lin P, Xia L, Ng T (2007) First isolation of an antifungal lipid transfer peptide from seeds of a Brassica species. Peptides 28(8):1514–1519
Article
CAS
PubMed
Google Scholar
Lipkin A, Anisimova V, Nikonorova A, Babakov A, Krause E, Bienert M et al (2005) An antimicrobial peptide Ar-AMP from amaranth (Amaranthus retroflexus L.) seeds. Phytochemistry 66(20):2426–2431
Article
CAS
PubMed
Google Scholar
Liu F, Zhang X, Lu C, Zeng X, Li Y, Fu D, Wu G (2015) Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J Exp Bot 66(19):5663–5681. https://doi.org/10.1093/jxb/erv313
Article
CAS
PubMed
Google Scholar
Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419(6905):399–403. https://doi.org/10.1038/nature00962
Article
CAS
PubMed
Google Scholar
Mareška V, Tvaroška I, Králová B, Spiwok V (2015) Molecular simulations of hevein/(GlcNAc) 3 complex with weakened OH/O and CH/π hydrogen bonds: Implications for their role in complex stabilization. Carbohyd Res 408:1–7
Article
CAS
Google Scholar
Martins JC, Maes D, Loris R, Pepermans HA, Wyns L, Willem R, Verheyden P (1996) 1H NMR study of the solution structure of Ac-AMP2, a sugar binding antimicrobial protein isolated from Amaranthus caudatus. J Mol Biol 258(2):322–333
Article
CAS
PubMed
Google Scholar
Mohan S, Meiyalaghan S, Latimer JM, Gatehouse ML, Monaghan KS, Vanga BR et al (2014) GSL2 over-expression confers resistance to Pectobacterium atrosepticum in potato. Theor Appl Genet 127(3):677–689. https://doi.org/10.1007/s00122-013-2250-2
Article
CAS
PubMed
Google Scholar
Molina A, Segura A, Garcia-Olmedo F (1993) Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett 316(2):119–122. https://doi.org/10.1016/0014-5793(93)81198-9
Article
CAS
PubMed
Google Scholar
Nielsen KK, Nielsen JE, Madrid SM, Mikkelsen JD (1997) Characterization of a new antifungal chitin-binding peptide from sugar beet leaves. Plant Physiol 113(1):83–91
Article
CAS
PubMed
PubMed Central
Google Scholar
Nieuwland J, Feron R, Huisman BA, Fasolino A, Hilbers CW, Derksen J, Mariani C (2005) Lipid transfer proteins enhance cell wall extension in tobacco. Plant Cell 17(7):2009–2019
Article
CAS
PubMed
PubMed Central
Google Scholar
Nordstrom R, Malmsten M (2017) Delivery systems for antimicrobial peptides. Adv Colloid Interface Sci 242:17–34. https://doi.org/10.1016/j.cis.2017.01.005
Article
CAS
PubMed
Google Scholar
Odintsova TI, Vassilevski AA, Slavokhotova AA, Musolyamov AK, Finkina EI, Khadeeva NV et al (2009) A novel antifungal hevein-type peptide from Triticum kiharae seeds with a unique 10-cysteine motif. FEBS J 276(15):4266–4275
Article
CAS
PubMed
Google Scholar
Pan Y, Li J, Jiao L, Li C, Zhu D, Yu J (2016) A non-specific Setaria italica lipid transfer protein gene plays a critical role under abiotic stress. Front Plant Sci 7:1752
PubMed
PubMed Central
Google Scholar
Pasquato N, Berni R, Folli C, Folloni S, Cianci M, Pantano S et al (2006) Crystal structure of peach Pru p3, the prototypic member of the family of plant non-specific lipid transfer protein pan-allergens. J Mol Biol 356(3):684–694. https://doi.org/10.1016/j.jmb.2005.11.063
Article
CAS
PubMed
Google Scholar
Petersen A, Kleine-Tebbe J, Scheurer S (2017). Stable plant food allergens I: lipid-transfer proteins. In: Molecular Allergy Diagnostics. Springer, pp 57–75
Regente MC, De La Canal L (2000) Purification, characterization and antifungal properties of a lipid-transfer protein from sunflower (Helianthus annuus) seeds. Physiol Plant 110(2):158–163
Article
CAS
Google Scholar
Rivillas-Acevedo LA, Soriano-García M (2007) Isolation and biochemical characterization of an antifungal peptide from Amaranthus hypochondriacus seeds. J Agric Food Chem 55(25):10156–10161
Article
CAS
PubMed
Google Scholar
Shukurov RR, Voblikova VD, Nikonorova AK, Komakhin RA, Komakhina VV, Egorov TA et al (2012) Transformation of tobacco and Arabidopsis plants with Stellaria media genes encoding novel hevein-like peptides increases their resistance to fungal pathogens. Transgenic Res 21(2):313–325
Article
CAS
Google Scholar
Sohal AK, Pallas JA, Jenkins GI (1999) The promoter of a Brassica napus lipid transfer protein gene is active in a range of tissues and stimulated by light and viral infection in transgenic Arabidopsis. Plant Mol Biol 41(1):75–87. https://doi.org/10.1023/a:1006232700835
Article
CAS
PubMed
Google Scholar
Souza AA, Costa AS, Campos DCO, Batista AHM, Sales GWP, Nogueira NAP et al (2018) Lipid transfer protein isolated from noni seeds displays antibacterial activity in vitro and improves survival in lethal sepsis induced by CLP in mice. Biochimie 149:9–17. https://doi.org/10.1016/j.biochi.2018.03.011
Article
CAS
PubMed
Google Scholar
Sterk P, Booij H, Schellekens GA, Van Kammen A, De Vries SC (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3(9):907–921
CAS
PubMed
PubMed Central
Google Scholar
Sy D, Le Gravier Y, Goodfellow J, Vovelle F (2003) Protein stability and plasticity of the hydrophobic cavity in wheat ns-LTP. J Biomol Struct Dyn 21(1):15–29. https://doi.org/10.1080/07391102.2003.10506902
Article
CAS
PubMed
Google Scholar
Terras FR, Goderis IJ, Van Leuven F, Vanderleyden J, Cammue BP, Broekaert WF (1992) In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol 100(2):1055–1058. https://doi.org/10.1104/pp.100.2.1055
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas WR (2014) Allergen ligands in the initiation of allergic sensitization. Curr Allergy Asthma Rep 14(5):432
Article
PubMed
CAS
Google Scholar
Tian N, Liu F, Wang P, Yan X, Gao H, Zeng X, Wu G (2018) Overexpression of BraLTP2, a lipid transfer protein of Brassica napus, results in increased trichome density and altered concentration of secondary metabolites. Int J Mol Sci 19(6):1733
Article
PubMed Central
CAS
Google Scholar
Tordesillas L, Gómez-Casado C, Garrido-Arandia M, Murua-García A, Palacin A, Varela J et al (2013) Transport of Pru p3 across gastrointestinal epithelium—an essential step towards the induction of food allergy? Clin Exp Allergy 43(12):1374–1383
Article
CAS
PubMed
Google Scholar
Van den Bergh KP, Proost P, Van Damme J, Coosemans J, Van Damme EJ, Peumans WJ (2002) Five disulfide bridges stabilize a hevein-type antimicrobial peptide from the bark of spindle tree (Euonymus europaeus L.). FEBS Lett 530(1–3):181–185
Article
PubMed
Google Scholar
Volpicella M, Leoni C, Fanizza I, Rinalducci S, Placido A, Ceci LR (2015) Expression and characterization of a new isoform of the 9 kDa allergenic lipid transfer protein from tomato (variety San Marzano). Plant Physiol Biochem 96:64–71
Article
CAS
PubMed
Google Scholar
Wong KH, Tan WL, Serra A, Xiao T, Sze SK, Yang D, Tam JP (2016) Ginkgotides: proline-rich hevein-like peptides from gymnosperm Ginkgo biloba. Front Plant Sci 7:1639
Article
PubMed
PubMed Central
Google Scholar
Xiang Y, Huang R-H, Liu X-Z, Zhang Y, Wang D-C (2004) Crystal structure of a novel antifungal protein distinct with five disulfide bridges from Eucommia ulmoides Oliver at an atomic resolution. J Struct Biol 148(1):86–97
Article
CAS
PubMed
Google Scholar
Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395. https://doi.org/10.1038/415389a
Article
CAS
PubMed
Google Scholar
Zhang D, Liang W, Yin C, Zong J, Gu F, Zhang D (2010) OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiol 154(1):149–162. https://doi.org/10.1104/pp.110.158865
Article
CAS
PubMed
PubMed Central
Google Scholar