Archer J (1973) Tests for emotionality in rats and mice: a review. Anim Behav 21(2):205–235. https://doi.org/10.1016/S0003-3472(73)80065-X
Article
CAS
PubMed
Google Scholar
Bert B, Fink H, Sohr R, Rex A (2001) Different effects of diazepam in Fischer rats and two stocks of Wistar rats in tests of anxiety. Pharmacol Biochem Behav 70(2–3):411–420. https://doi.org/10.1016/s0091-3057(01)00629-3
Article
CAS
PubMed
Google Scholar
Bertoglio L J, de Pádua Carobrez A (2016) Animal tests for anxiety. In: Andersen M, Tufik S (eds) Rodent model as tools in ethical biomedical research. Springer, Cham. https://doi.org/10.1007/978-3-319-11578-8_18
Bickerdike MJ, Fletcher A, Marsden CA (1995) Attenuation of CCK-induced aversion in rats on the elevated x-maze by the selective 5-HT1A receptor antagonists (+) WAY100135 and WAY100635. Neuropharmacology 34(7):805–811. https://doi.org/10.1016/0028-3908(95)00037-7
Article
CAS
PubMed
Google Scholar
Bihaqi SW, Singh AP, Tiwari M (2012) Supplementation of convolvulus pluricaulis attenuates scopolamine-induced increased Tau and amyloid precursor protein (AbetaPP) expression in rat brain. Indian J Pharmacol 44(5):593–598. https://doi.org/10.4103/0253-7613.100383
Article
PubMed
PubMed Central
Google Scholar
Bindra D, Thompson WR (1953) An evaluation of defecation and urination as measures of fearfulness. J Comp Physiol Psychol 46(1):43. https://doi.org/10.1037/h0057952
Article
CAS
PubMed
Google Scholar
Blanchard DC, Griebel G, Blanchard RJ (2001) Mouse defensive behaviors: pharmacological and behavioral assays for anxiety and panic. Neurosci Biobehav Rev 25(3):205–218. https://doi.org/10.1016/S0149-7634(01)00009-4
Article
CAS
PubMed
Google Scholar
Brown RE, Corey SC, Moore AK (1999) Differences in measures of exploration and fear in MHC-congenic C57BL/6J and B6-H-2K mice. Behav Genet 29:263–271. https://doi.org/10.1023/A:1021694307672
Article
Google Scholar
Campos CA, Fogaça MV, Aguiar DC, Guimarães FS (2013) Animal models of anxiety disorders and stress. Rev Bras Psiquiatr 35:S101–S111. https://doi.org/10.1590/1516-4446-2013-1139
Article
PubMed
Google Scholar
Cheon SY, Koo B, Kim SY et al (2020) Scopolamine-induced delirium promotes neuroinflammation and neuropsychiatric disorder in mice. Res Square 6:66
Google Scholar
Choleris E, Thomas AW, Kavaliers M, Prato FS (2001) A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci Biobehav Rev 25(3):235–260. https://doi.org/10.1016/S0149-7634(01)00011-2
Article
CAS
PubMed
Google Scholar
Christmas AJ, Maxwell DR (1970) A comparison of the effects of some benzodiazepines and other drugs on aggressive and exploratory behaviour in mice and rats. Neuropharmacology 9(1):17–29. https://doi.org/10.1016/0028-3908(70)90044-4
Article
CAS
PubMed
Google Scholar
Ciarlone AE (1978) Further modification of a fluorometric method for analyzing brain amines. Microchem J 23:9–12. https://doi.org/10.1016/0026-265X(78)90034-6
Article
CAS
Google Scholar
Cook L, Sepinwall J (1975) Behavioral analysis of the effects and mechanisms of action of benzodiazepines. Adv Biochem Psychopharmacol 14:1–28
CAS
Google Scholar
Ennaceur A (2014) Tests of unconditioned anxiety—pitfalls and disappointments. Physiol Behav 135:55–71. https://doi.org/10.1016/j.physbeh.2014.05.032
Article
CAS
PubMed
Google Scholar
Fisher CE, Hughes RN (1996) Effects of diazepam and cyclohexyladenosine on open-field behavior in rats perinatally exposed to caffeine. Life Sci 58(8):701–709. https://doi.org/10.1016/S0024-3205(96)80009-9
Article
CAS
PubMed
Google Scholar
Gentsch C, Lichtsteiner M, Feer H (1987) Open field and elevated plus-maze: a behavioural comparison between spontaneously hypertensive (SHR) and Wistar–Kyoto (WKY) rats and the effects of chlordiazepoxide. Behav Brain Res 25(2):101–107. https://doi.org/10.1016/0166-4328(87)90003-9
Article
CAS
PubMed
Google Scholar
Gould TD, Dao DT, Kovacsics CE (2009) The open field test. In: Mood and anxiety related phenotypes in mice: Characterization using behavioural tests. Springer, pp 1–2042. https://doi.org/10.1007/978-1-60761-303-9
Hall CS (1934) Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. J Comp Psychol 18(3):385
Article
Google Scholar
Hamilton TJ, Morrill A, Lucas K et al (2017) Establishing zebrafish as a model to study the anxiolytic effects of scopolamine. Sci Rep 7:15081. https://doi.org/10.1038/s41598-017-15374-w
Article
CAS
PubMed
PubMed Central
Google Scholar
Hines TJ, Minton BR (2012) Effects of environmental enrichment on rat behavior in the open field test. NCUR. https://www.researchgate.net/profile/Tim-Hines/publication/306057513
Jafarian S, Ling K, Hassan Z et al (2019) Effect of zerumbone on scopolamine-induced memory impairment and anxiety-like behaviours in rats, Alzheimer’s & Dementia. Transl Res Clin Interven 5:637–643. https://doi.org/10.1016/j.trci.2019.09.009
Article
Google Scholar
Jahkel M, Rilke O, Koch R, Oehler J (2000) Open field locomotion and neurotransmission in mice evaluated by principal component factor analysis-effects of housing condition, individual activity disposition and psychotropic drugs. Prog Neuro-Psychopharmacol Boil Psychiatry 24:61–84. https://doi.org/10.1016/s0278-5846(99)00081-0
Article
CAS
Google Scholar
Kalueff AV, Tuohimaa P (2004) Experimental modeling of anxiety and depression. Acta Neurobiol Exp 64(4):439–448
Google Scholar
Klinkenberg I, Blokland A (2010) The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev 34:1307–1350. https://doi.org/10.1016/j.neubiorev.2010.04.001
Article
CAS
PubMed
Google Scholar
Liu T, Xia Z, Zhang WW, Xu JR, Ge XX, Li J, Cui Y, Qiu ZB, Xu J, Xie Q, Wang H (2013) Bis (9)-(−)-nor-meptazinol as a novel dual-binding AChEI potently ameliorates scopolamine-induced cognitive deficits in mice. Pharmacol Biochem Behav 104:138–143. https://doi.org/10.1016/j.pbb.2012.11.009
Article
CAS
PubMed
Google Scholar
Mällo T, Kõiv K, Koppel I et al (2008) Regulation of extracellular serotonin levels and brain-derived neurotrophic factor in rats with high and low exploratory activity. Brain Res 1194(5):110–117. https://doi.org/10.1016/j.brainres.2007.11.041
Article
CAS
PubMed
PubMed Central
Google Scholar
Morilak DA, Frazer A (2004) Antidepressants and brain monoaminergic systems: a dimensional approach to understanding their behavioural effects in depression and anxiety disorders. Int J Neuropsychopharmacol 7(2):193–218. https://doi.org/10.1017/S1461145704004080
Article
CAS
PubMed
Google Scholar
Murphy DL, Li Q, Engel S, Wichems C, Andrews A, Lesch KP, Uhl G (2001) Genetic perspectives on the serotonin transporter. Brain Res Bull 56(5):487–494. https://doi.org/10.1016/S0361-9230(01)00622-0
Article
CAS
PubMed
Google Scholar
Nachum Z, Shupak A, Gordon CR (2006) Transdermal scopolamine for prevention of motion sickness. Clin Pharmacokinet Therap Appl 45:543–566. https://doi.org/10.2165/00003088-200645060-00001
Article
CAS
Google Scholar
Nazar M, Siemiatkowski M, Bidziński A, Członkowska A et al (1999) The influence of serotonin depletion on rat behavior in the Vogel test and brain 3H-zolpidem binding. J Neural Transm 106(5–6):355–68. https://doi.org/10.1007/s007020050164
Article
CAS
PubMed
Google Scholar
Ohl F (2003) Testing for anxiety. Clin Neurosci Res 3(4–5):233–238. https://doi.org/10.1016/S1566-2772(03)00084-7
Article
Google Scholar
Plotnik R, Mollenauer S, Gore W, Popov A (1975) Comparing the effects of scopolamine on operant and aggressive responses in squirrel monkeys. Pharmacol Biochem Behav 3(5):739–748. https://doi.org/10.1016/0091-3057(75)90100-8
Article
CAS
PubMed
Google Scholar
Popović M, Giménez de Béjar V, Popović N, Caballero-Bleda M (2015) Time course of scopolamine effect on memory consolidation and forgetting in rats. Neurobiol Learn Mem 118:49–54. https://doi.org/10.1016/j.nlm.2014.11.006
Article
CAS
PubMed
Google Scholar
Ramakrishnan P, Chandrasekhar T, Muralidharan P (2015) Cognitive enhancing, anti-acetylcholinesterase, and antioxidant properties of Tagetes patula on scopolamine-induced amnesia in mice. Int J Green Pharm 9:167–174. https://doi.org/10.4103/0973-8258.161234b
Article
CAS
Google Scholar
Renner UD, Oertel R, Kirch W (2005) Pharmacokinetics and pharmacodynamics in clinical use of scopolamine. Ther Drug Monit 27(5):655–665. https://doi.org/10.1097/01.ftd.0000168293.48226.57
Article
CAS
PubMed
Google Scholar
Salloway S, Harrington C, Jacobson S (2006) Psychiatric evaluation of the neurological patient. In: Jests DV, Friedman JH. (eds) Psychiatry for neurologists. Current clinical neurology. Humana Press. https://doi.org/10.1007/978-1-59259-960-8_3
Sethi P, Jyoti A, Singh R, Hussain E, Sharma D (2008) Aluminium-induced electrophysiological, biochemical and cognitive modifications in the hippocampus of aging rats. Neurotoxicology 29(6):1069–1079. https://doi.org/10.1016/j.neuro.2008.08.005
Article
CAS
PubMed
Google Scholar
Stanford SC (2007) The open field test: reinventing the wheel. J Psychopharmacol 21(2):134–136. https://doi.org/10.1177/0269881107073199
Article
PubMed
Google Scholar
Steimer T (2011) Animal models of anxiety disorders in rats and mice: some conceptual issues. Dialog Clin Neurosci 13(4):495–506. https://doi.org/10.31887/DCNS.2011.13.4/tsteimer
Article
Google Scholar
Thomas T, Dooley T (2018) Treatment of anxiety prior to a medical procedure using an atenolol—scopolamine combination drug. J Depress Anxiety 7:1–5. https://doi.org/10.4172/2167-1044.1000303
Article
CAS
Google Scholar
Valvassori SS, Varela RB, Quevedo J (2017) Animal models of mood disorders: focus on bipolar disorder and depression. In: Animal models for the study of human disease, pp 991–1001. Academic press. https://doi.org/10.1016/B978-0-12-809468-6.00038-3
Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504. https://doi.org/10.1037/0033-2909.83.3.482
Article
CAS
PubMed
Google Scholar
Wang X, Wang ZH, Wu YY, Tang H, Tan L, Wang X, Gao XY, Xiong YS, Liu D, Wang JZ, Zhu LQ (2013) Melatonin attenuates scopolamine-induced memory/synaptic disorder by rescuing EPACs/miR-124/Egr1 pathway. Mol Neurobiol 47(1):373–381. https://doi.org/10.1007/s12035-012-8355-9
Article
CAS
PubMed
Google Scholar
Wise CD, Berger BD, Stein L (1972) Benzodiazepines: anxiety-reducing activity by reduction of serotonin turnover in the brain. Science 177(4044):180–183. https://doi.org/10.1126/science.177.4044.180
Article
CAS
PubMed
Google Scholar
Zaki HF, Abd-El-Fattah MA, Amina S, Attia AS (2014) Naringenin protects against scopolamine-induced dementia in rats. Bull Facul Pharms 52(1):15–25. https://doi.org/10.1016/j.bfopcu.2013.11.001
Article
Google Scholar