Sultana J, Crisafulli S, Gabbay F, Lynn E, Shakir S, Trifirò G (2020) Challenges for drug repurposing in the COVID-19 pandemic era. Front Pharmacol 11:1657
Google Scholar
Chung JY, Thone MN, Kwon YJ (2021) COVID-19 vaccines: the status and perspectives in delivery points of view. Adv Drug Deliv Rev 170:1–25
CAS
PubMed
Google Scholar
Dos Santos WG (2020) Natural history of COVID-19 and current knowledge on treatment therapeutic options. Biomed Pharmacother 129:110493
PubMed
PubMed Central
Google Scholar
Rauch S, Jasny E, Schmidt KE, Petsch B (2018) New vaccine technologies to combat outbreak situations. Front Immunol 9:1963
PubMed
PubMed Central
Google Scholar
Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, Ferguson NM (2021) Assessing transmissibility of SARS-CoV-2 lineage B. 1.1. 7 in England. Nature 593(7858):266–269
CAS
PubMed
Google Scholar
WHO. Classification of omicron (B.1.1.529): SARS-CoV-2 variant of concern. https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concernStatement. 26 November 2021
https://www.who.int/teams/blueprint/covid-19/covid-19-vaccine-tracker-and-landscape
García-Sastre A, Mena I (2013) Novel vaccine strategies against emerging viruses. Curr Opin Virol 3(2):210–216
PubMed
PubMed Central
Google Scholar
Wilhelm A, Widera M, Grikscheit K, Toptan T, Schenk B, Pallas C, Ciesek S (2021) Reduced neutralization of SARS-CoV-2 omicron variant by vaccine sera and monoclonal antibodies. MedRxiv
Cele S, Jackson L, Khoury DS, Khan K, Moyo-Gwete T, Tegally H, Hanekom W (2021) SARS-CoV-2 Omicron has extensive but incomplete escape of Pfizer BNT162b2 elicited neutralization and requires ACE2 for infection. MedRxiv 593:142
CAS
Google Scholar
Lurie N, Saville M, Hatchett R, Halton J (2020) Developing COVID-19 vaccines at pandemic speed. N Engl J Med 382(21):1969–1973
CAS
PubMed
Google Scholar
Woo PCY, Huang Y, Lau SKP, Yuen KY (2010) Coronavirus genomics and bioinformatics analysis. Viruses 2(8):1804–1820
CAS
PubMed
PubMed Central
Google Scholar
Ortiz-Prado E, Simbaña-Rivera K, Gómez-Barreno L, Rubio-Neira M, Guaman LP, Kyriakidis NC, López-Cortés A (2020) Clinical, molecular, and epidemiological characterization of the SARS-CoV-2 virus and the Coronavirus Disease 2019 (COVID-19), a comprehensive literature review. Diagn Microbiol Infect Dis 98(1):115094
CAS
PubMed
PubMed Central
Google Scholar
Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, Jiang L (2020) Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol 17(6):613–620
CAS
PubMed
PubMed Central
Google Scholar
McBride R, van Zyl M, Fielding BC (2014) The coronavirus nucle- ocapsid is a multifunctional protein. Viruses 6(8):2991–3018
PubMed
PubMed Central
Google Scholar
Yoshimoto FK (2020) The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J 39:198–216
CAS
PubMed
PubMed Central
Google Scholar
Venkatagopalan P, Daskalova SM, Lopez LA, Dolezal KA, Hogue BG (2015) Coronavirus envelope (E) protein remains at the site of assembly. Virology 478:75–85
CAS
PubMed
Google Scholar
Schoeman D, Fielding BC (2019) Coronavirus envelope protein: current knowledge. Virol J 16(1):1–22
CAS
Google Scholar
Baglivo M, Baronio M, Natalini G, Beccari T, Chiurazzi P, Fulcheri E, Bertelli M (2020) Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: a possible strategy for reducing SARS-COV-2 infectivity? Acta Bio Med Atenei Parmensis 91(1):161
Google Scholar
Michel CJ, Mayer C, Poch O, Thompson JD (2020) Characterization of accessory genes in coronavirus genomes. Virol J 17(1):1–13
Google Scholar
Romano M, Ruggiero A, Squeglia F, Maga G, Berisio R (2020) A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells 9(5):1267
CAS
PubMed Central
Google Scholar
Graham RL, Sparks JS, Eckerle LD, Sims AC, Denison MR (2008) SARS coronavirusreplicase proteins in pathogenesis. Virus Res 133(1):88–100
CAS
PubMed
Google Scholar
Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Li F (2020) Structural basis of receptor recognition by SARS-CoV-2. Nature 581(7807):221–224
CAS
PubMed
PubMed Central
Google Scholar
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, McLellan JS (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367(6483):1260–1263
CAS
PubMed
PubMed Central
Google Scholar
Liu DX, Fung TS, Chong KKL, Shukla A, Hilgenfeld R (2014) Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res 109:97–109
CAS
PubMed
PubMed Central
Google Scholar
Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S (2014) Structural disorder in viral proteins. Chem Rev 114(13):6880–6911
CAS
PubMed
Google Scholar
Alsaadi EAJ, Jones IM (2019) Membrane binding proteins of coronaviruses. Future Virol 14(4):275–286
Google Scholar
Tang C, Deng Z, Li X, Yang M, Tian Z, Chen Z, Chen Z (2020) Helicase of type 2 porcine reproductive and respiratory syndrome virus strain HV reveals a unique structure. Viruses 12(2):215
CAS
PubMed Central
Google Scholar
Müller C, Schulte FW, Lange-Grünweller K, Obermann W, Madhugiri R, Pleschka S, Grünweller A (2018) Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona-and picornaviruses. Antiviral Res 150:123–129
PubMed
Google Scholar
Ehrenfeld E, Modlin J, Chumakov K (2009) Future of polio vaccines. Expert Rev Vaccines 8(7):899–905
PubMed
Google Scholar
Barrett PN, Mundt W, Kistner O, Howard MK (2009) Vero cell platform in vaccine production: moving towards cell culture-based viral vaccines. Expert Rev Vaccines 8(5):607–618
CAS
PubMed
Google Scholar
Sanders B, Koldijk M, Schuitemaker H (2015) Inactivated viral vaccines. In: Vaccine analysis: strategies, principles, and control. Springer, Berlin pp 45–80
Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Qin C (2020) Development of an inactivated vaccine candidate for SARS-CoV-2. Science 369(6499):77–81
CAS
PubMed
Google Scholar
Wang H, Zhang Y, Huang B, Deng W, Quan Y, Wang W, Yang X (2020) Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell 182(3):713–721
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Zeng H, Gu J, Li H, Zheng L, Zou Q (2020) Progress and prospects on vaccine development against SARS-CoV-2. Vaccines 8(2):153
CAS
PubMed Central
Google Scholar
Wang J, Peng Y, Xu H, Cui Z, Williams RO (2020) The COVID-19 vaccine race: challenges and opportunities in vaccine formulation. AAPS PharmSciTech 21(6):1–12
Google Scholar
Hansson M, Nygren PAK, Ståhl S (2000) Design and production of recombinant subunit vaccines. Biotechnol Appl Biochem 32(2):95–107
CAS
PubMed
Google Scholar
Choi J, Kim MG, Oh YK, Kim YB (2017) Progress of Middle East respiratory syndrome coronavirus vaccines: a patent review. Expert Opin Ther Pat 27(6):721–731
CAS
PubMed
Google Scholar
Salvatori G, Luberto L, Maffei M, Aurisicchio L, Roscilli G, Palombo F, Marra E (2020) SARS-CoV-2 SPIKE PROTEIN: an optimal immunological target for vaccines. J Transl Med 18:1–3
Google Scholar
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Pöhlmann S (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271–280
CAS
PubMed
PubMed Central
Google Scholar
Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D, Martinez-Chapa SO (2020) Nanotechnology for COVID-19: therapeutics and vaccine research. ACS Nano 14(7):7760–7782
CAS
PubMed
Google Scholar
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Cao B (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506
CAS
PubMed
PubMed Central
Google Scholar
Lin LY, Tran TH (2020) Coronaviruses pandemics: can neutralizing antibodies help? Life Sci 255:117836
PubMed
PubMed Central
Google Scholar
He Y, Zhou Y, Liu S, Kou Z, Li W, Farzan M, Jiang S (2004) Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun 324:773–781
CAS
PubMed
PubMed Central
Google Scholar
Tai W, Zhao G, Sun S, Guo Y, Wang Y, Tao X, Zhou Y (2016) A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoVinfection. Virology 499:375–382
CAS
PubMed
Google Scholar
Liu J, Sun Y, Qi J, Chu F, Wu H, Gao F, Gao GF (2010) The membrane protein of severe acute respiratory syndrome coronavirus acts as a dominant immunogen revealed by a clustering region of novel functionally and structurally defined cytotoxic Tlymphocyteepitopes. J Infect Dis 202(8):1171–1180
CAS
PubMed
Google Scholar
Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, Glenn GM (2020) Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med 383(24):2320–2332
CAS
PubMed
Google Scholar
Liang JG, Su D, Song TZ, Zeng Y, Huang W, Wu J, Liang P (2021) STrimer, a COVID-19 subunit vaccine candidate, induces protective immunity in nonhuman primates. Nat Commun 12(1):1–12
Google Scholar
Pandey SC, Pande V, Sati D, Upreti S, Samant M (2020) Vaccination strategies to combat novel corona virus SARS-CoV-2. Life Sci 256:117956
CAS
PubMed
PubMed Central
Google Scholar
Logunov DY, Dolzhikova IV, Zubkova OV, Tukhvatullin AI, Shcheblyakov DV, Dzharullaeva AS, Gintsburg AL (2020) Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet 396(10255):887–897
CAS
PubMed
PubMed Central
Google Scholar
Zeltins A (2013) Construction and characterization of virus-like particles: a review. Mol Biotechnol 53(1):92–107
CAS
PubMed
Google Scholar
Dai S, Wang H, Deng F (2018) Advances and challenges in enveloped virus-like particle (VLP)-based vaccines. J Immunol Sci. https://doi.org/10.29245/2578-3009/2018/2.118
Article
Google Scholar
Prasad A, Muthamilarasan M, Prasad M (2020) Synergistic antiviral effects against SARS-CoV-2 by plant-based molecules. Plant Cell Rep 39(9):1109–1114
CAS
PubMed
PubMed Central
Google Scholar
Gurunathan S, Wu CY, Freidag BL, Seder RA (2000) DNA vaccines: a key for inducing long-term cellular immunity. Curr Opin Immunol 12(4):442–447
CAS
PubMed
Google Scholar
Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9(10):776–788
CAS
PubMed
PubMed Central
Google Scholar
Flingai S, Czerwonko M, Goodman J, Kudchodkar SB, Muthumani K, Weiner DB (2013) Synthetic DNA vaccines: improved vaccine potency by electroporation and codeliveredgenetic adjuvants. Front Immunol 4:354
PubMed
PubMed Central
Google Scholar
Vogel AB, Lambert L, Kinnear E, Busse D, Erbar S, Reuter KC, Tregoning JS (2018) Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol Ther 26(2):446–455
CAS
PubMed
Google Scholar
Mahase E (2020) Covid-19: UK approves Pfizer and BioNTech vaccine with rollout due to start next week. BMJ. https://doi.org/10.1136/bmj.m4714
Article
PubMed
Google Scholar
Pardi N, Hogan MJ, Porter FW, Weissman D (2018) mRNA vaccines—a new era invaccinology. Nat Rev Drug Discov 17(4):261–279
CAS
PubMed
PubMed Central
Google Scholar
Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, Jansen KU (2020) Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 586(7830):589–593
CAS
PubMed
Google Scholar
Ura T, Okuda K, Shimada M (2014) Developments in viral vector-based vaccines. Vaccines 2(3):624–641
PubMed
PubMed Central
Google Scholar
Sebastian S, Lambe T (2018) Clinical advances in viral-vectored influenza vaccines. Vaccines 6(2):29
PubMed Central
Google Scholar
Waehler R, Russell SJ, Curiel DT (2007) Engineering targeted viral vectors for gene therapy. Nat Rev Genet 8(8):573–587
CAS
PubMed
PubMed Central
Google Scholar
Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ, Li JX, Chen W (2020) Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 395(10240):1845–1854
CAS
PubMed
PubMed Central
Google Scholar
van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR, Munster VJ (2020) ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature 586(7830):578–582
PubMed
PubMed Central
Google Scholar
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS (2020) Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med 46:586–590
CAS
PubMed
PubMed Central
Google Scholar
Silva-Cayetano, A., Foster, W. S., Innocentin, S., Belij-Rammerstorfer, S., Spencer, A. J., Burton, O. T., Linterman, M. A. (2021). A booster dose enhances immunogenicity of theCOVID-19 vaccine candidate ChAdOx1 nCoV-19 in aged mice.Med, 2(3), 243–262.
Callaway E (2020) Russia’s fast-track coronavirus vaccine draws outrage over safety. Nature 584(7821):334–336
CAS
PubMed
Google Scholar
https://sputnikvaccine.com/newsroom/pressreleases/second-interim-analysis-of-clinical-trialdata-showed-a-91-4-efficacy-for-the-sputnik-v-vaccine-on-d/
Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S (2009) The spike protein of SARS-CoV—a target for vaccine and therapeutic development. Nat Rev Microbiol 7(3):226–236
CAS
PubMed
PubMed Central
Google Scholar
Zhu FC, Guan XH, Li YH, Huang JY, Jiang T, Hou LH, Chen W (2020) Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 396(10249):479–488
CAS
PubMed
PubMed Central
Google Scholar
Karpiński TM, Ożarowski M, Seremak-Mrozikiewicz A, Wolski H, Wlodkowic D (2021) The 2020 race towards SARS-CoV-2 specific vaccines. Theranostics 11(4):1690
PubMed
PubMed Central
Google Scholar
Soema PC, Kompier R, Amorij JP, Kersten GF (2015) Current and next generation influenza vaccines: formulation and production strategies. Eur J Pharm Biopharm 94:251–263
CAS
PubMed
Google Scholar
van Riel D, de Wit E (2020) Next-generation vaccine platforms for COVID-19. Nat Mater 19(8):810–812
PubMed
Google Scholar
Wallis J, Shenton DP, Carlisle RC (2019) Novel approaches for the design, delivery and administration of vaccine technologies. Clin Exp Immunol 196(2):189–204
CAS
PubMed
PubMed Central
Google Scholar