Dash JN, Jha R (2015) Fabry-Perot based strain insensitive photonic crystal fiber modal interferometer for inline sensing of refractive index and temperature. Appl Opt 54(35):10479–10486
Article
CAS
Google Scholar
Wadsworth W, Knight J, Reeves W, Russell P, Arriaga J (2000) Yb3+-doped photonic crystal fibre laser. Electron Lett 36:1452-1454(2). https://doi.org/10.1049/el_20000942
Article
Google Scholar
Taya SA, Doghmosh N, Abutailkh MA, Upadhyay A, Nassar ZM, Colak I (2021) Properties of band gap for p-polarized wave propagating in a binary superconductor-dielectric photonic crystal. Optik 243:167505. https://doi.org/10.1016/j.ijleo.2021.167505
Article
CAS
Google Scholar
Doghmosh N, Taya SA, Upadhyay A, Olaimat MM, Colak I (2021) Enhancement of optical visible wavelength region selective reflector for photovoltaic cell applications using a ternary photonic crystal. Optik 243:167491. https://doi.org/10.1016/j.ijleo.2021.167491
Article
CAS
Google Scholar
Taha TA, Mehaney A, Elsayed HA (2022) Detection of heavy metals using one-dimensional gyroidal photonic crystals for effective water treatment. Mater Chem Phys 285:126125. https://doi.org/10.1016/j.matchemphys.2022.126125
Article
CAS
Google Scholar
Segovia-Chaves F, Elsayed HA, Mehaney A (2021) Tunability in the terahertz range of a one-dimensional photonic quasicrystal containing an InSb semiconductor. Optik 245:167675. https://doi.org/10.1016/j.ijleo.2021.167675
Article
CAS
Google Scholar
Mehaney A, Abadla MM, Elsayed HA (2021) 1D porous silicon photonic crystals comprising Tamm/Fano resonance as high performing optical sensors. J Mol Liquids 322:114978. https://doi.org/10.1016/j.molliq.2020.114978
Article
CAS
Google Scholar
Abadla MM, Elsayed HA, Mehaney A (2020) Sensitivity enhancement of annular one dimensional photonic crystals temperature sensors with nematic liquid crystals. Phys Scr 95(8):085508. https://doi.org/10.1088/1402-4896/aba2b0
Article
CAS
Google Scholar
Ahmed AM, Elsayed HA, Mehaney A (2021) High-performance temperature sensor based on one-dimensional pyroelectric photonic crystals comprising tamm/fano resonances. Plasmonics 16(2):547–557. https://doi.org/10.1007/s11468-020-01314-4
Article
CAS
Google Scholar
Asaduzzaman S, Rehana H, Aziz MDT, Ahmed AM, Elsayed HA, Mehaney A (2022) Design of hexa-wheel sectored photonic crystal fiber for soybean biodiesel sensing. Phys Scr 97(3):030005. https://doi.org/10.1088/1402-4896/ac52cf
Article
Google Scholar
Elsayed HA, Taha TA, Algarni SA, Ahmed AM, Mehaney A (2022) Evolution of optical Tamm states in a 1D photonic crystal comprising a nanocomposite layer for optical filtering and reflecting purposes. Opt Quant Electron 54(5):312. https://doi.org/10.1007/s11082-022-03715-7
Article
CAS
Google Scholar
Møller U, Yu Y, Kubat I, Petersen CR, Gai X, Brilland L, Méchin D, Caillaud C, Troles J, Luther-Davies B, Bang O (2015) Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Opt Expr 23:3282–3291
Article
Google Scholar
Schliesser A, Picqué N, Hänsch TW (2012) Mid-infrared frequency combs. Nat Photon 6(7):440–449. https://doi.org/10.1038/nphoton.2012.142
Article
CAS
Google Scholar
Eggleton BJ, Luther-Davies B, Richardson K (2011) Chalcogenide photonics. Nat Photon 5(3):141–148. https://doi.org/10.1038/nphoton.2011.309
Article
CAS
Google Scholar
Seddon AB (2011) A prospective for new mid-infrared medical endoscopy using chalcogenide glasses. Int J Appl Glass Sci 2(3):177–191. https://doi.org/10.1111/j.2041-1294.2011.00059.x
Article
CAS
Google Scholar
Ke K, Xia C, Islam MN, Welsh MJ, Freeman MJ (2009) Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser. Opt Expr 17:12627–12640
Article
CAS
Google Scholar
Dupont S, Petersen C, Thøgersen J, Agger C, Bang O, Keiding SR (2012) IR microscopy utilizing intense supercontinuum light source. Opt Expr 20(5):4887–4892
Article
Google Scholar
Zhao Z, Wu B, Wang X, Pan Z, Liu Z, Zhang P, Shen X, Nie Q, Dai S, Wang R (2017) Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber. Laser & Photon Rev 11(2):1700005. https://doi.org/10.1002/lpor.201700005
Article
CAS
Google Scholar
Izawa T, Shibata N, Takeda A (1977) Optical attenuation in pure and doped fused silica in the IR wavelength region. Appl Phys Lett 31(1):33–35. https://doi.org/10.1063/1.89468
Article
CAS
Google Scholar
Feng X, Shi J, Segura M, White NM, Kannan P, Loh WH, Calvez L, Zhang X, Brilland L (2013) Halo-tellurite glass fiber with low OH content for 2–5μm mid-infrared nonlinear applications. Opt Expr 21(16):18949–18954
Article
Google Scholar
Zhang Y, Kainerstorfer J, Knight JC, Omenetto FG (2017) Experimental measurement of supercontinuum coherence in highly nonlinear soft-glass photonic crystal fibers. Opt Expr 25(16):18842–18852
Article
CAS
Google Scholar
Calvez L (2017) Chalcogenide glasses and glass-ceramics: transparent materials in the infrared for dual applications. Comptes Rendus Physiq 18(5):314–322. https://doi.org/10.1016/j.crhy.2017.05.003
Article
CAS
Google Scholar
Tripathi S, Kumar B, and Dwivedi DK (2018) Chalcogenide glasses: thin film deposition techniques and applications in the field of electronics. In: 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), 2–4, pp 1–4, https://doi.org/10.1109/UPCON.2018.8597029
Wang J, Vogel E, Snitzer E (1994) Tellurite glass: a new candidate for fiber devices. Opt Mater 3(3):187–203
Article
CAS
Google Scholar
Ferrando A, Silvestre E, Miret J, Monsoriu J, Andrés M, Russell PS (1999) Designing a photonic crystal fibre with flattened chromatic dispersion. Electron Lett 35:325-327(2). https://doi.org/10.1049/el_19990189
Article
Google Scholar
Reeves W, Knight J, Russell P, Roberts P (2002) Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt Expr 10(14):609–613
Article
Google Scholar
Faisal M, Mia MB, Chowdhury KR, Ani AB, Ghosh S, and Naz SI (2018) Heptagonal photonic crystal fiber for dispersion compensation with a very low confinement loss. In: 2018 10th international conference on electrical and computer engineering (ICECE), pp 257–260
Fiaboe KF, Kumar P, Roy JS (2019) Flattened zero dispersion Photonic crystal fibers with embedded nano holes and ultra low confinement loss for supercontinuum generation. Adv Electromagn 8(4):7–15
Article
Google Scholar
Ani AB and Faisal M (2016) Ultra-flattened broadband dispersion compensating photonic crystal fiber with ultra-low confinement loss. In: 2016 9th international conference on electrical and computer engineering (ICECE), pp 243–246
Ferrando A, Silvestre E, Andres P, Miret JJ, Andres MV (2001) Designing the properties of dispersion-flattened photonic crystal fibers. Opt Expr 9(13):687–697
Article
CAS
Google Scholar
Namihira Y, Hossain MA, Liu J, Koga T, Kinjo T, Hirako Y, Begum F, Kaijage SF, Razzak SMA, and Nozaki S (2011) Dispersion flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. In: IET international conference on communication technology and application (ICCTA 2011), pp 815–818
Klimczak M, Siwicki B, Skibi´nski P, Pysz D, Stepie´n R, Heidt A, Radzewicz C, Buczynski R (2014) Coherent supercontinuum generation up to 2.3 μm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion. Opt Expr 22(15):18824–18832
Article
Google Scholar
Liao J, Sun J, Du M, Qin Y (2014) Highly nonlinear dispersion- flattened slotted spiral photonic crystal fibers. IEEE Photon Technol Lett 26(4):380–383
Article
Google Scholar
Matsui T, Zhou J, Nakajima K, Sankawa I (2005) Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss. J Lightw Technol 23(12):4178–4183
Article
Google Scholar
Singh S, Upadhyay A, Sharma D, Taya SA (2022) A comprehensive study of large negative dispersion and highly nonlinear perforated core PCF: theoretical insight. Phys Scr 97(6):065504. https://doi.org/10.1088/1402-4896/ac6d1a
Article
Google Scholar
Upadhyay A, Singh S, Sharma D, Taya SA (2021) Analysis of proposed PCF with square air hole for revolutionary high birefringence and nonlinearity. Photon Nanostruct - Fundam Appl 43:100896. https://doi.org/10.1016/j.photonics.2021.100896
Article
Google Scholar
Upadhyay A, Singh S, Sharma D, Taya SA (2021) A highly birefringent bend-insensitive porous core PCF for endlessly single-mode operation in THz regime: an analysis with core porosity. Appl Nanosci 11(3):1021–1030. https://doi.org/10.1007/s13204-020-01664-9
Article
CAS
Google Scholar
Upadhyay A, Singh S, Sharma D, Taya SA (2021) An ultra-high birefringent and nonlinear decahedron photonic crystal fiber employing molybdenum disulphide (MoS2): a numerical analysis. Mater Sci Eng B 270:115236. https://doi.org/10.1016/j.mseb.2021.115236
Article
CAS
Google Scholar
Pleitez MA, Hertzberg O, Bauer A, Seeger M, Lieblein T, Lilienfeld-Toal HV, Mantele W (2015) Photothermal deflectometry enhanced by total internal reflection enables non-invasive glucose monitoring in human epidermis. Analyst 140:483–488. https://doi.org/10.1039/C4AN01185F
Article
CAS
PubMed
Google Scholar
Nguyen M-H, Tsai H-J, Wu J-K, Wu Y-S, Lee M-C, Tseng F-G (2013) Cascaded nano-porous silicon for high sensitive biosensing and functional group distinguishing by Mid-IR spectra. Biosens Bioelectron 47:80–85
Article
CAS
Google Scholar
Kalantari M, Karimkhani A, Saghaei H (2018) Ultra-Wide mid-IR supercontinuum generation in As2S3 photonic crystal fiber by rods filling technique. Optik 158:142–151. https://doi.org/10.1016/j.ijleo.2017.12.014
Article
CAS
Google Scholar
Shen LP, Huang WP, Chen GX, Jian SS (2003) Design and optimization of photonic crystal fibers for broad-band dispersion compensation. IEEE Photon Technol Lett 15(4):540–542. https://doi.org/10.1109/LPT.2003.809322
Article
Google Scholar
Hansen KP, Folkenberg JR, Peucheret C, and Bjarklev A (2003) Fully dispersion controlled triangular-core nonlinear photonic crystal fiber.In: OFC 2003 optical fiber communications conference, 28–28, pp. PD2–1, https://doi.org/10.1109/OFC.2003.316021
Tzong-Lin W, Chia-Hsin C (2005) A novel ultraflattened dispersion photonic crystal fiber. IEEE Photon Technol Lett 17(1):67–69. https://doi.org/10.1109/LPT.2004.837475
Article
Google Scholar
Poli F, Cucinotta A, Selleri S, Bouk AH (2004) Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers. IEEE Photon Technol Lett 16(4):1065–1067. https://doi.org/10.1109/LPT.2004.824624
Article
Google Scholar
Agrawal G (2012) Nonlinear fiber optics, 5th ed. Elsevier Academic Press
Raja SJ, Rao SS, Charlcedony R (2020) Design and analysis of dispersion-compensating chalcogenide photonic crystal fiber with high birefringence. SN Appl Sci 2(3):499. https://doi.org/10.1007/s42452-020-2308-0
Article
CAS
Google Scholar