Barsanti L, Gualtieri P (2014) Algae: anatomy, biochemistry, and biotechnology. CRC press
Xu L, Weathers PJ, Xiong X, Liu C (2009) Microalgal bioreactors: challenges and opportunities. Eng Life Sci 9:178–189
CAS
Google Scholar
Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14:1037–1047
CAS
Google Scholar
Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee D-J, Chang J-S (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62
CAS
PubMed
Google Scholar
Rezayian M, Niknam V, Ebrahimzadeh H (2019) Oxidative damage and antioxidative system in algae. Toxicol Reports
Rose RC, Bode AM (1993) Biology of free radical scavengers: an evaluation of ascorbate. FASEB J 7:1135–1142
CAS
PubMed
Google Scholar
Halliwell B, Gutteridge JMC (1990) [1] Role of free radicals and catalytic metal ions in human disease: an overview. In: Methods in enzymology. Elsevier, pp 1–85
Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352
CAS
PubMed
PubMed Central
Google Scholar
Miranda MS, Sato S, Mancini-Filho J (2001) Antioxidant activity of the microalga Chlorella vulgaris cultered on special conditions. Boll Chim Farm 140:165–168
CAS
PubMed
Google Scholar
Jerez-Martel I, García-Poza S, Rodríguez-Martel G, Rico M, Afonso-Olivares C, Gómez-Pinchetti JL (2017) Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains. J Food Qual 2017
Premkumar C, Divya M, Krishnaveni N, Santhanam P, Pachiappan P (2019) An Estimation of Antimicrobial and Antioxidant Activity of Microalgae. In: Basic and Applied Phytoplankton Biology. Springer, pp 303–314
Zhang H, Tsao R (2016) Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci 8:33–42
Google Scholar
Mrabet A, García-Borrego A, Jiménez-Araujo A, Fernández-Bolaños J, Sindic M, Rodríguez-Gutiérrez G (2017) Phenolic extracts obtained from thermally treated secondary varieties of dates: Antimicrobial and antioxidant properties. LWT-Food Sci Technol 79:416–422
CAS
Google Scholar
Ferhi S, Santaniello S, Zerizer S, Cruciani S, Fadda A, Sanna D, Dore A, Maioli M, D’hallewin G (2019) Total phenols from grape leaves counteract cell proliferation and modulate apoptosis-related gene expression in MCF-7 and HepG2 human cancer cell lines. Molecules 24:612
PubMed Central
Google Scholar
Martin KR, Appel CL (2010) Polyphenols as dietary supplements: a double-edged sword. Nutr Diet Suppl 2:12
Google Scholar
Rico M, López A, Santana-Casiano JM, Gonzàlez AG, Gonzàlez-Dàvila M (2013) Variability of the phenolic profile in the diatom Phaeodactylum tricornutum growing under copper and iron stress. Limnol Oceanogr 58:144–152
CAS
Google Scholar
Bulut O, Akın D, Sönmez Ç, Öktem A, Yücel M, Öktem HA (2019) Phenolic compounds, carotenoids, and antioxidant capacities of a thermo-tolerant Scenedesmus sp.(Chlorophyta) extracted with different solvents. J Appl Phycol 31:1675–1683
CAS
Google Scholar
García-Lafuente A, Guillamón E, Villares A, Rostagno MA, Martínez JA (2009) Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res 58:537–552
PubMed
Google Scholar
Hossain K, Abdal Dayem A, Han J, Yin Y, Kim K, Kumar Saha S, Yang G-M, Choi H, Cho S-G (2016) Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int J Mol Sci 17:569
Google Scholar
Alghazeer R, Elmansori A, Sidati M, Gammoudi F, Azwai S, Naas H, Garbaj A, Eldaghayes I (2017) In vitro antibacterial activity of flavonoid extracts of two selected libyan algae against multi-drug resistant bacteria isolated from food products. JBM 5:26–48
CAS
Google Scholar
Yan X, Yang C, Lin G, Chen Y, Miao S, Liu B, Zhao C (2019) Antidiabetic potential of green seaweed Enteromorpha prolifera flavonoids regulating insulin signaling pathway and gut microbiota in type 2 diabetic mice. J Food Sci 84:165–173
CAS
PubMed
Google Scholar
Choubert G, Heinrich O (1993) Carotenoid pigments of the green alga Haematococcus pluvialis: assay on rainbow trout, Oncorhynchus mykiss, pigmentation in comparison with synthetic astaxanthin and canthaxanthin. Aquaculture 112:217–226 https://doi.org/https://doi.org/10.1016/0044-8486(93)90447-7
CAS
Google Scholar
Christaki E, Bonos E, Florou-Paneri P (2015) Innovative microalgae pigments as functional ingredients in nutrition. In: Handbook of Marine Microalgae. Elsevier, pp 233–243
Pan-utai W, Iamtham S (2019) Extraction, purification and antioxidant activity of phycobiliprotein from Arthrospira platensis. Process Biochem 82:189–198
CAS
Google Scholar
Ras M, Steyer J-P, Bernard O (2013) Temperature effect on microalgae: a crucial factor for outdoor production. Rev Environ Sci bio/technology 12:153–164
CAS
Google Scholar
Goiris K, Van Colen W, Wilches I, León-Tamariz F, De Cooman L, Muylaert K (2015) Impact of nutrient stress on antioxidant production in three species of microalgae. Algal Res 7:51–57
Google Scholar
Thawechai T, Cheirsilp B, Louhasakul Y, Boonsawang P, Prasertsan P (2016) Mitigation of carbon dioxide by oleaginous microalgae for lipids and pigments production: Effect of light illumination and carbon dioxide feeding strategies. Bioresour Technol 219:139–149
CAS
PubMed
Google Scholar
Syarina PNA, Karthivashan G, Abas F, Arulselvan P, Fakurazi S (2015) Wound healing potential of Spirulina platensis extracts on human dermal fibroblast cells. EXCLI J 14:385
PubMed
PubMed Central
Google Scholar
Sahni P, Aneja RK (2018) Development and characterization of natural food colorant from microalgae Chlorella sp.(Abca-17) and its use in food products. Indian J Ecol 45:194–200
Google Scholar
Zuluaga M, Gueguen V, Pavon-Djavid G, Letourneur D (2017) Carotenoids from microalgae to block oxidative stress. BioImpacts BI 7:1
CAS
PubMed
PubMed Central
Google Scholar
Vidhyavathi R, Venkatachalam L, Sarada R, Ravishankar GA (2008) Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. J Exp Bot 59:1409–1418
CAS
PubMed
Google Scholar
Mulders KJM, Weesepoel Y, Bodenes P, Lamers PP, Vincken J-P, Martens DE, Gruppen H, Wijffels RH (2015) Nitrogen-depleted Chlorella zofingiensis produces astaxanthin, ketolutein and their fatty acid esters: a carotenoid metabolism study. J Appl Phycol 27:125–140
CAS
Google Scholar
Dedusenko-Schegoleva NT, Hollerbach MM (1962) Field Guide of USSR Freshwater Algae. Xanthophyta
Prescott GW (1978) How to know the freshwater algae. Wm. C. C Brown Co Publ UK
Andersen RA (2005) Algal culturing techniques. Elsevier
Rippka R (1992) Pasteur culture collection of cyanobacterial strains in axenic culture. Cat Taxon handbook, Cat strains 1992/1993 1:1–103
Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341
CAS
PubMed
Google Scholar
Cheng Z, Moore J, Yu L (2006) High-throughput relative DPPH radical scavenging capacity assay. J Agric Food Chem 54:7429–7436
CAS
PubMed
Google Scholar
Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158
CAS
Google Scholar
Woisky RG, Salatino A (1998) Analysis of propolis: some parameters and procedures for chemical quality control. J Apic Res 37:99–105
CAS
Google Scholar
Metzner H, Rau H, Senger H (1965) Untersuchungen zur Synchronisierbarkeit einzelner Pigmentmangel-Mutanten von Chlorella. Planta. https://doi.org/10.1007/BF00384998
Snedecor, George Waddel (2008). In: The Concise Encyclopedia of Statistics.
Li H-B, Cheng K-W, Wong C-C, Fan K-W, Chen F, Jiang Y (2007) Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102:771–776
CAS
Google Scholar
Goiris K, Muylaert K, Fraeye I, Foubert I, De Brabanter J, De Cooman L (2012) Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol 24:1477–1486
CAS
Google Scholar
Fernando IPS, Kim M, Son K-T, Jeong Y, Jeon Y-J (2016a) Antioxidant activity of marine algal polyphenolic compounds: a mechanistic approach. J Med Food 19:615–628
PubMed
Google Scholar
Sahin SC (2019) Scenedesmus obliquus: A Potential Natural Source for Cosmetic Industry. Int J Second Metab 6:129–136
Google Scholar
Patil L, Kaliwal BB (2019) Microalga Scenedesmus bajacalifornicus BBKLP-07, a new source of bioactive compounds with in vitro pharmacological applications. Bioprocess Biosyst Eng 42:979–994 https://doi.org/10.1007/s00449-019-02099-5
CAS
PubMed
Google Scholar
Hajimahmoodi M, Faramarzi MA, Mohammadi N, Soltani N, Oveisi MR, Nafissi-Varcheh N (2010) Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol 22:43–50
CAS
Google Scholar
Shetty V, Sibi G (2015) Relationship between total phenolics content and antioxidant activities of microalgae under autotrophic, heterotrophic and mixotrophic growth. J Food Resour Sci 4:1–9
Google Scholar
Morowvat MH, Goharian S, Ghasemi Y (2019) Investigation of Antioxidant Properties of Three Naturally Isolated Microalgae: Identification and Bioinformatics Evaluation of the Most Efficient Strain. Recent Pat Biotechnol
Machu L, Misurcova L, Vavra Ambrozova J, Orsavova J, Mlcek J, Sochor J, Jurikova T (2015) Phenolic content and antioxidant capacity in algal food products. Molecules 20:1118–1133
PubMed
PubMed Central
Google Scholar
Ali HI, Doumandji A (2017) Comparative phytochemical analysis and in vitro antimicrobial activities of the cyanobacterium Spirulina platensis and the green alga Chlorella pyrenoidosa: potential application of bioactive components as an alternative to infectious diseases. Bull l’Institut Sci Rabat, Sect Sci la Vie:41–49
Galasso C, Gentile A, Orefice I, Ianora A, Bruno A, Noonan DM, Sansone C, Albini A, Brunet C (2019) Microalgal derivatives as potential nutraceutical and food supplements for human health: A focus on cancer prevention and interception. Nutrients 11:1226
CAS
PubMed Central
Google Scholar
Choochote W, Suklampoo L, Ochaikul D (2014) Evaluation of antioxidant capacities of green microalgae. J Appl Phycol 26:43–48 https://doi.org/10.1007/s10811-013-0084-6
CAS
Google Scholar
Guedes AC, Amaro HM, Pereira RD, Malcata FX (2011) Effects of temperature and pH on growth and antioxidant content of the microalga Scenedesmus obliquus. Biotechnol Prog 27:1218–1224
CAS
PubMed
Google Scholar
Stoica R, Velea S, Ilie L, Calugareanu M, Ghimis SB, Ion R-M (2013) The influence of ethanol concentration on the total phenolics and antioxidant activity of scenedesmus opoliensis algal biomass extracts. Rev Chim 64:304–306
CAS
Google Scholar
Hamouda RA, El-Naggar NE-A, Abou-El-Seoud GW (2018) Enhancement of Pharmaceutical and Bioactive Components of Scenedesmus obliquus Grown Using Different Concentrations of KNO 3. Int J Pharmacol 14:758–765
CAS
Google Scholar
Sansone C, Brunet C (2019) Promises and Challenges of Microalgal Antioxidant Production. Antioxidants 8:199
CAS
PubMed Central
Google Scholar
Assunção MFG, Amaral R, Martins CB, Ferreira JD, Ressurreição S, Santos SD, Varejão JMTB, Santos LMA (2017) Screening microalgae as potential sources of antioxidants. J Appl Phycol 29:865–877
Google Scholar
Kartal M, Orhan I, Abu-Asaker M, Senol FS, Atici T, Sener B (2009) Antioxidant and anticholinesterase assets and liquid chromatography-mass spectrometry preface of various fresh-water and marine macroalgae. Pharmacogn Mag 5:291
Google Scholar
Vuran V, Pabuccu K, Demiriz T, Elmastas M (2012) Antioxidant capacity and total phenolic compounds of Vaucheria geminata (Vaucher) DC. J Biotechnol 161:28 https://doi.org/https://doi.org/10.1016/j.jbiotec.2012.07.075
Google Scholar
Siriwardhana N, Lee K-W, Jeon Y-J, Kim S-H, Haw J-W (2003) Antioxidant activity of Hizikia fusiformis on reactive oxygen species scavenging and lipid peroxidation inhibition. Food Sci Technol Int 9:339–346
Google Scholar
Safafar H, Van Wagenen J, Møller P, Jacobsen C (2015) Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Mar Drugs 13:7339–7356
CAS
PubMed
PubMed Central
Google Scholar
Sommella E, Conte G, Salviati E, Pepe G, Bertamino A, Ostacolo C, Sansone F, Prete F, Aquino R, Campiglia P (2018) Fast profiling of natural pigments in different spirulina (arthrospira platensis) dietary supplements by DI-FT-ICR and evaluation of their antioxidant potential by pre-column DPPH-UHPLC assay. Molecules 23:1152
PubMed Central
Google Scholar
Guedes AC, Gião MS, Matias AA, Nunes AVM, Pintado ME, Duarte CMM, Malcata FX (2013) Supercritical fluid extraction of carotenoids and chlorophylls a, b and c, from a wild strain of Scenedesmus obliquus for use in food processing. J Food Eng 116:478–482
CAS
Google Scholar
Takaichi S (2011) Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs 9:1101–1118
CAS
PubMed
PubMed Central
Google Scholar
White DA, Pagarette A, Rooks P, Ali ST (2013) The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures. J Appl Phycol 25:153–165
CAS
Google Scholar
Ferreira da Silva V, Sant’Anna C (2017) Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J Microbiol Biotechnol 33:20
Google Scholar
Jaeschke DP, Rech R, Marczak LDF, Mercali GD (2017) Ultrasound as an alternative technology to extract carotenoids and lipids from Heterochlorella luteoviridis. Bioresour Technol 224:753–757
CAS
PubMed
Google Scholar
Saini RK, Keum Y-S (2018) Carotenoid extraction methods: A review of recent developments. Food Chem 240:90–103
CAS
PubMed
Google Scholar
Mortensen A (2006) Carotenoids and other pigments as natural colorants. Pure Appl Chem 78:1477–1491
CAS
Google Scholar
Wrolstad RE, Culver CA (2012) Alternatives to those artificial FD&C food colorants. Annu Rev Food Sci Technol 3:59–77
CAS
PubMed
Google Scholar
Wang F, Huang L, Gao B, Zhang C (2018) Optimum production conditions, purification, identification, and antioxidant activity of violaxanthin from microalga Eustigmatos cf. polyphem (Eustigmatophyceae). Mar Drugs 16:190
PubMed Central
Google Scholar
Fernando IPS, Nah J-W, Jeon Y-J (2016b) Potential anti-inflammatory natural products from marine algae. Environ Toxicol Pharmacol 48:22–30
CAS
PubMed
Google Scholar
Levine I, Fleurence J (2018) Microalgae in health and disease prevention. Academic Press
Barbalace MC, Malaguti M, Giusti L, Lucacchini A, Hrelia S, Angeloni C (2019) Anti-Inflammatory Activities of Marine Algae in Neurodegenerative Diseases. Int J Mol Sci 20:3061
CAS
PubMed Central
Google Scholar
Natella F, Nardini M, Di Felice M, Scaccini C (1999) Benzoic and cinnamic acid derivatives as antioxidants: Structure− activity relation. J Agric Food Chem 47:1453–1459
CAS
PubMed
Google Scholar
Sova M (2012) Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev Med Chem 12:749–767
CAS
PubMed
Google Scholar
Hafizur RM, Hameed A, Shukrana M, Raza SA, Chishti S, Kabir N, Siddiqui RA (2015) Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomedicine 22:297–300
CAS
PubMed
Google Scholar
Lima TC, Ferreira AR, Silva DF, Lima EO, de Sousa DP (2018) Antifungal activity of cinnamic acid and benzoic acid esters against Candida albicans strains. Nat Prod Res 32:572–575
CAS
PubMed
Google Scholar
Akao Y, Maruyama H, Matsumoto K, Ohguchi K, Nishizawa K, Sakamoto T, Araki Y, Mishima S, Nozawa Y (2003) Cell growth inhibitory effect of cinnamic acid derivatives from propolis on human tumor cell lines. Biol Pharm Bull 26:1057–1059
CAS
PubMed
Google Scholar
Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnol Reports 4:86–93
CAS
Google Scholar
Peperidou A, Pontiki E, Hadjipavlou-Litina D, Voulgari E, Avgoustakis K (2017) Multifunctional cinnamic acid derivatives. Molecules 22:1247
PubMed Central
Google Scholar
Goiris K, Muylaert K, Voorspoels S, Noten B, De Paepe D, GJ EB, De Cooman L (2014) Detection of flavonoids in microalgae from different evolutionary lineages. J Phycol 50:483–492
CAS
PubMed
Google Scholar
Michalak I, Chojnacka K (2015) Algae as production systems of bioactive compounds. Eng Life Sci 15:160–176
CAS
Google Scholar