Quijano C, Trujillo M, Castro L, Trostchansky A (2016) Interplay between oxidant species and energy metabolism. Redox Biology 8:28–42. https://doi.org/10.1016/j.redox.2015.11.010
Article
CAS
PubMed
Google Scholar
Weidinger A, Kozlov A (2015) Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules 5:472–484. https://doi.org/10.3390/biom5020472
Article
CAS
PubMed
PubMed Central
Google Scholar
Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry 30:11–26. https://doi.org/10.1007/s12291-014-0446-0
Article
CAS
PubMed
Google Scholar
Labunskyy VM, Gladyshev VN (2013) Role of reactive oxygen species-mediated signaling in aging. Antioxidants & Redox Signaling 19:1362–1372. https://doi.org/10.1089/ars.2012.4891
Article
CAS
Google Scholar
Finkel T (2011) Signal transduction by reactive oxygen species. The Journal of Cell Biology 194:7–15. https://doi.org/10.1083/jcb.201102095
Article
CAS
PubMed
PubMed Central
Google Scholar
Woolley JF, Stanicka J, Cotter TG (2013) Recent advances in reactive oxygen species measurement in biological systems. Trends in Biochemical Sciences 38:556–565. https://doi.org/10.1016/j.tibs.2013.08.009
Article
CAS
PubMed
Google Scholar
Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxidative Med Cell Longevity:1–23. https://doi.org/10.1155/2016/3164734
Calabrese V, Sultana R, Scapagnini G, Guagliano E, Sapienza M, Bella R, Kanski J, Pennisi G, Mancuso C, Stella AMG, Butterfield DA (2006) Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer’s disease. Antioxidants & Redox Signaling 8:1975–1986. https://doi.org/10.1089/ars.2006.8.1975
Article
CAS
Google Scholar
el-Ghissassi F, Valsesia-Wittmann S, Falette N, Duriez C, Walden PD, Puisieux A (2002) BTG2TIS21/PC3 induces neuronal differentiation and prevents apoptosis of terminally differentiated PC12 cells. Oncogene 21:6772–6778. https://doi.org/10.1038/sj.onc.1205888
Article
CAS
PubMed
Google Scholar
Slevin M, Sanfeliu C, Turu MM, Grau-Olivares M, Ferrer I, Boluda S, Marti-Fabregas J, Kumar S, Kumar P, Krupinski J (2009) B-cell translocation gene 2 is over-expressed in peri-infarct neurons after ischaemic stroke. Pathobiology 76:129–135. https://doi.org/10.1159/000209390
Article
CAS
PubMed
Google Scholar
Zhang S-J, Steijaert MN, Lau D, Schütz G, Delucinge-Vivier C, Descombes P, Bading H (2007) Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death. Neuron 53:549–562. https://doi.org/10.1016/j.neuron.2007.01.025
Article
CAS
PubMed
Google Scholar
Imran M, Lim IK (2013) Regulation of Btg2/TIS21/PC3 expression via reactive oxygen species–protein kinase C–ΝFκΒ pathway under stress conditions. Cellular Signalling 25:2400–2412. https://doi.org/10.1016/j.cellsig.2013.07.015
Article
CAS
PubMed
Google Scholar
Yang Y, Liu L, Naik I, Braunstein Z, Zhong J, Ren B (2017) Transcription factor C/EBP homologous protein in health and diseases. Frontiers in Immunology 8. https://doi.org/10.3389/fimmu.2017.01612
Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death and Differentiation 11:381–389. https://doi.org/10.1038/sj.cdd.4401373
Article
CAS
PubMed
Google Scholar
Lei Y, Wang S, Ren B, Wang J, Chen J, Lu J, Zhan S, Fu Y, Huang L, Tan J (2017) CHOP favors endoplasmic reticulum stress-induced apoptosis in hepatocellular carcinoma cells via inhibition of autophagy. PLOS ONE 12:e0183680. https://doi.org/10.1371/journal.pone.0183680
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu H, Tian M, Ding C, Yu S (2019) The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Frontiers in Immunology 9. https://doi.org/10.3389/fimmu.2018.03083
Kasai S, Yamazaki H, Tanji K, Engler MJ, Matsumiya T, Itoh K (2019) Role of the ISR_ATF4 pathway and its cross talk with Nrf2 in mitochondrial quality control. J Clin Biochem Nutri (1):1–12. https://doi.org/10.3164/jcbn.18-37
Back SH, Kaufman RJ (2012) Endoplasmic reticulum stress and type 2 diabetes. Annual Review of Biochemistry 81:767–793. https://doi.org/10.1146/annurev-biochem-072909-095555
Article
CAS
PubMed
PubMed Central
Google Scholar
Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L (2011) Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harbor Perspectives in Biology 3:a004317–a004317. https://doi.org/10.1101/cshperspect.a004317
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei R, Enaka M, Muragaki Y (2019) Activation of KEAP1/NRF2/P62 signaling alleviates high phosphate-induced calcification of vascular smooth muscle cells by suppressing reactive oxygen species production. Scientific Reports 9. https://doi.org/10.1038/s41598-019-46824-2
Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, Chen P-C (2008) The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Annals of the New York Academy of Sciences 1147:61–69. https://doi.org/10.1196/annals.1427.036
Article
CAS
PubMed
PubMed Central
Google Scholar
Granatiero V, Konrad C, Bredvik K, Manfredi G, Kawamata H (2019) Nrf2 signaling links ER oxidative protein folding and calcium homeostasis in health and disease. Life Science Alliance 2:e201900563. https://doi.org/10.26508/lsa.201900563
Article
PubMed
PubMed Central
Google Scholar
Buendia I, Michalska P, Navarro E, Gameiro I, Egea J, León R (2016) Nrf2–ARE pathway: an emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacology & Therapeutics 157:84–104. https://doi.org/10.1016/j.pharmthera.2015.11.003
Article
CAS
Google Scholar
Uppu RM, Pryor WA (1996) Synthesis of peroxynitrite in a two-phase system using isoamyl nitrite and hydrogen peroxide. Analytical Biochemistry 236:242–249. https://doi.org/10.1006/abio.1996.0162
Article
CAS
PubMed
Google Scholar
Zarrindast MR, Javadi-Paydar M, Delphi L (2012) Morphine-induced nitric oxide production in PC12 cells. Archives of Iranian Medicine 7:404–408
Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:7248–7254
Article
Google Scholar
Estévez AG, Radi R, Barbeito L, Shin JT, Thompson JA, Beckman JS (2002) Peroxynitrite-induced cytotoxicity in PC12 cells: evidence for an apoptotic mechanism differentially modulated by neurotrophic factors. J Neurochem 65:1543–1550. https://doi.org/10.1046/j.1471-4159.1995.65041543.x
Article
Google Scholar
Sharifi AM, Mousavi SH, Farhadi M, Larijani B (2007) Study of high glucose-induced apoptosis in PC12 cells: role of Bax protein. J Pharmacol Sci 104:258–262. https://doi.org/10.1254/jphs.FP0070258
Article
CAS
PubMed
Google Scholar
Huang C, Lin Y, Su H, Ye D (2015) Forsythiaside protects against hydrogen peroxide-induced oxidative stress and apoptosis in PC12 cell. Neurochemical Research 40:27–35. https://doi.org/10.1007/s11064-014-1461-5
Article
CAS
PubMed
Google Scholar
Chernivec E, Cooper J, Naylor K (2018) Exploring the effect of rotenone—a known inducer of Parkinson’s disease—on mitochondrial dynamics in dictyostelium discoideum. cells 7:201. https://doi.org/10.3390/cells7110201
Article
CAS
PubMed Central
Google Scholar
Han E-S, Muller FL, Pérez VI, Qi W, Liang H, Xi L, Fu C, Doyle E, Hickey M, Cornell J, Epstein CJ, Roberts LJ, Van Remmen H, Richardson A (2008) The in vivo gene expression signature of oxidative stress. Physiological Genomics 34:112–126. https://doi.org/10.1152/physiolgenomics.00239.2007
Article
CAS
PubMed
PubMed Central
Google Scholar
Karve TM, Rosen EM (2012) B-cell translocation gene 2 (BTG2) stimulates cellular antioxidant defenses through the antioxidant transcription factor NFE2L2 in human mammary epithelial cells. J Biol Chem 287:31503–31514. https://doi.org/10.1074/jbc.M112.367433
Article
CAS
PubMed
PubMed Central
Google Scholar
Sundaramoorthy S, Ryu M, Lim I (2013) B-cell translocation gene 2 mediates crosstalk between PI3K/Akt1 and NFκB pathways which enhances transcription of MnSOD by accelerating IκBα degradation in normal and cancer cells. Cell Communication and Signaling 11:69. https://doi.org/10.1186/1478-811X-11-69
Article
CAS
PubMed
Google Scholar
Choi YW, Park TJ, Kim HS, Lim IK (2013) Signals regulating necrosis of cardiomyoblast by BTG2/TIS21/PC3 via activation of GSK3β and opening of mitochondrial permeability transition pore in response to H2O2. Biochem Biophys Res Commun 434:559–565. https://doi.org/10.1016/j.bbrc.2013.03.114
Article
CAS
PubMed
Google Scholar
Ma Q (2013) Role of Nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology 53:401–426. https://doi.org/10.1146/annurev-pharmtox-011112-140320
Article
CAS
PubMed
PubMed Central
Google Scholar
Paschen W, Mengesdorf T, Althausen S, Hotop S (2001) Peroxidative stress selectively down-regulates the neuronal stress response activated under conditions of endoplasmic reticulum dysfunction: peroxide-induced damage of ER stress response. J Neurochem 76:1916–1924. https://doi.org/10.1046/j.1471-4159.2001.00206.x
Article
CAS
PubMed
Google Scholar
Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000) Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. Journal of Biological Chemistry 275:16023–16029. https://doi.org/10.1074/jbc.275.21.16023
Article
CAS
PubMed
Google Scholar
Um H-C, Jang J-H, Kim D-H, Lee C, Surh Y-J (2011) Nitric oxide activates Nrf2 through S-nitrosylation of Keap1 in PC12 cells. Nitric Oxide 25:161–168. https://doi.org/10.1016/j.niox.2011.06.001
Article
CAS
PubMed
Google Scholar
Mattart L, Calay D, Simon D, Roebroeck L, Caesens-Koenig L, Van Steenbrugge M, Tevel V, Michiels C, Arnould T, Boudjeltia KZ, Raes M (2012) The peroxynitrite donor 3-morpholinosydnonimine activates Nrf2 and the UPR leading to a cytoprotective response in endothelial cells. Cellular Signalling 24:199–213. https://doi.org/10.1016/j.cellsig.2011.09.002
Article
CAS
PubMed
Google Scholar
Goswami P, Gupta S, Biswas J, Joshi N, Swarnkar S, Nath C, Singh S (2016) Endoplasmic reticulum stress plays a key role in rotenone-induced apoptotic death of neurons. Molecular Neurobiology 53:285–298. https://doi.org/10.1007/s12035-014-9001-5
Article
CAS
PubMed
Google Scholar
McCullough KD, Martindale JL, Klotz L-O, Aw T-Y, Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Molecular and Cellular Biology 21:1249–1259. https://doi.org/10.1128/MCB.21.4.1249-1259.2001
Article
CAS
PubMed
PubMed Central
Google Scholar
Indo H, Chuan En H (2014) A mitochondrial superoxide theory for oxidative. Journal of Clinical Biochemistry and Nutrition 56:1–7. https://doi.org/10.3164/jcbn.14-42
Article
CAS
PubMed
PubMed Central
Google Scholar
Filipović D, Zlatković J, Pajović SB (2009) The effect of acute or/and chronic stress on the MnSOD protein expression in rat prefrontal cortex and hippocampus. Gen Physiol Biophysics 28:53–61
Google Scholar