Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG et al (2020) A new coronavirus associated with human respiratory disease in China. Nature 579(7798):265–269. https://doi.org/10.1038/s41586-020-2008-3
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ et al (2020) Research and development on therapeutic agents and vaccines for COVID-19 and related human Coronavirus diseases. ACS Central Sci 6(3):315–331. https://doi.org/10.1021/acscentsci.0c00272
Article
CAS
Google Scholar
Nakagawa K, Lokugamage KG, Makino S (2016) Viral and cellular mRNA translation in coronavirus-infected cells. Adv Virus Res 96:165–192. https://doi.org/10.1016/bs.aivir.2016.08.001
Article
CAS
PubMed
PubMed Central
Google Scholar
Gautret P, Lagier JC, Parola P, Meddeb L, Mailhe M, Doudier B et al (2020) Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 20(1):e105949. https://doi.org/10.1016/j.ijantimicag.2020.105949
Article
CAS
Google Scholar
Elfiky AA (2020) Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci 248:e117477. https://doi.org/10.1016/j.lfs.2020.117477
Article
CAS
Google Scholar
Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM (2020) The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res 178:104787. https://doi.org/10.1016/j.antiviral.2020.104787
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaul TN, Middleton E Jr, Ogra PL (1985) Antiviral effect of flavonoids on human viruses. J Med Virol 15(1):71–79. https://doi.org/10.1002/jmv.1890150110
Article
CAS
PubMed
Google Scholar
Vrijsen R, Everaert L, Boeyé A (1988) Antiviral activity of flavones and potentiation by ascorbate. J Gen Virol 69(7):1749–1751. https://doi.org/10.1099/0022-1317-69-7-1749
Article
CAS
PubMed
Google Scholar
Iwashina T (2015) Contribution to flower colors of flavonoids including anthocyanins: a review. Nat Prod Commun 10(3):529–544. https://doi.org/10.1177/1934578X1501000335
Article
PubMed
Google Scholar
Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47. https://doi.org/10.1017/jns.2016.41
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:e162750. https://doi.org/10.1155/2013/162750
Article
CAS
Google Scholar
David AVA, Arulmoli R, Parasuraman S (2016) Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev 10(20):84–89. https://doi.org/10.4103/0973-7847.194044
Article
CAS
Google Scholar
Mahmoud MF, Hassan NA, El Bassossy HM, Fahmy A (2013) Quercetin protects against diabetes-induced exaggerated vasoconstriction in rats: effect on low grade inflammation. PLoS One 8(5):e63784. https://doi.org/10.1371/journal.pone.0063784
Article
CAS
PubMed
PubMed Central
Google Scholar
Vafadar A, Shabaninejad Z, Movahedpour A, Fallahi F, Taghavipour M, Ghasemi Y (2020) Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells. Cell Biosci 10(1):32. https://doi.org/10.1186/s13578-020-00397-0
Article
CAS
PubMed
PubMed Central
Google Scholar
Haleagrahara N, Miranda-Hernandez S, Alim MA, Hayes L, Bird G, Ketheesan N (2017) Therapeutic effect of quercetin in collagen-induced arthritis. Biomed Pharmacother 90:38–46. https://doi.org/10.1016/j.biopha.2017.03.026
Article
CAS
PubMed
Google Scholar
Jaisinghani RN (2017) Antibacterial properties of quercetin. Microbiol Res 8(1):6877. https://doi.org/10.4081/mr.2017.6877
Article
CAS
Google Scholar
Sabogal-Guáqueta AM, Munoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP (2015) The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 93:134–145. https://doi.org/10.1016/j.neuropharm.2015.01.027
Article
CAS
PubMed
Google Scholar
Sriraksa N, Wattanathorn J, Muchimapura S, Tiamkao S, Brown K, Chaisiwamongkol K (2012) Cognitive-enhancing effect of quercetin in a rat model of Parkinson’s disease induced by 6-hydroxydopamine. Evid Based Complement Altern Med 2012:823206. https://doi.org/10.1155/2012/823206
Article
Google Scholar
Shoskes DA, Nickel JC (2011) Quercetin for chronic prostatitis/chronic pelvic pain syndrome. Urol Clin 38(3):279–284. https://doi.org/10.1016/j.ucl.2011.05.003
Article
Google Scholar
Ferreres F, Taveira M, Pereira M, Valentao P, Andrade PB (2010) Tomato (Lycopersicon esculentum) seeds: new flavonols and cytotoxic effect. J Agric Food Chem 58(5):2854–2861. https://doi.org/10.1021/jf904015f
Article
CAS
PubMed
Google Scholar
Zhang Y, Li Y, Cao C, Cao J, Chen W, Zhang Y et al (2010) Dietary flavonol and flavone intakes and their major food sources in Chinese adults. Nutr Cancer 62(8):1120–1127. https://doi.org/10.1080/01635581.2010.513800
Article
CAS
PubMed
Google Scholar
Wang D, Sun-Waterhouse D, Li F, Xin L, Li D (2019) MicroRNAs as molecular targets of quercetin and its derivatives underlying their biological effects: a preclinical strategy. Crit Rev Food Sci Nutr 59(14):2189–2201. https://doi.org/10.1080/10408398.2018.1441123
Article
CAS
PubMed
Google Scholar
Xu D, Hu MJ, Wang YQ, Cui YL (2019) Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 24(6):e1123. https://doi.org/10.3390/molecules24061123
Article
CAS
PubMed
Google Scholar
Chae HS, Xu R, Won JY, Chin YW, Yim H (2019) Molecular targets of genistein and its related flavonoids to exert anticancer effects. Int J Mol Sci 20(10):e2420. https://doi.org/10.3390/ijms20102420
Article
CAS
PubMed
Google Scholar
Jan AT, Kamli MR, Murtaza I, Singh JB, Ali A, Haq QMR (2010) Dietary flavonoid quercetin and associated health benefits - an overview. Food Rev Int 26(3):302–317. https://doi.org/10.1080/87559129.2010.484285
Article
CAS
Google Scholar
Nijveldt RJ, van Nood E, van Hoorn DEC, Boelens PG, van Norren K, van Leeuwen PAM (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74(4):418–425. https://doi.org/10.1093/ajcn/74.4.418
Article
CAS
PubMed
Google Scholar
Veckenstedt A, Pusztai R (1981) Mechanism of antiviral action of quercetin against cardiovirus infection in mice. Antiviral Res 1(4):249–261. https://doi.org/10.1016/0166-3542(81)90015-2
Article
CAS
PubMed
Google Scholar
Ganesan S, Faris AN, Comstock AT, Wang Q, Nanua S, Hershenson MB et al (2012) Quercetin inhibits rhinovirus replication in vitro and in vivo. Antiviral Res 94(3):258–271. https://doi.org/10.1016/j.antiviral.2012.03.005
Article
CAS
PubMed
PubMed Central
Google Scholar
Ono K, Nakane H, Fukushima M, Chermann JC, Barré-Sinoussi F (1990) Differential inhibitory effects of various flavonoids on the activities of reverse transcriptase and cellular DNA and RNA polymerase. Eur J Biochem 190(3):469–476. https://doi.org/10.1111/j.1432-1033.1990.tb15597.x
Article
CAS
PubMed
Google Scholar
Ohnishi E, Bannai H (1993) Quercetin potentiates TNF-induced antiviral activity. Antiviral Res 22(4):327–331. https://doi.org/10.1016/0166-3542(93)90041-G
Article
CAS
PubMed
Google Scholar
Wu W, Li R, Li X, He J, Jiang S, Liu S, Yang J (2016) Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses 8(1):6. https://doi.org/10.3390/v8010006
Article
CAS
Google Scholar
Lee S, Lee HH, Shin YS, Kang H, Cho H (2017) The anti-HSV-1 effect of quercetin is dependent on the suppression of TLR-3 in Raw 264.7 cells. Arch Pharm Res 40(5):623–630. https://doi.org/10.1007/s12272-017-0898-x
Article
CAS
PubMed
Google Scholar
Gravina HD, Tafuri NF, Júnior AS, Fietto JLR, Oliveira TT, Diaz MAN et al (2011) In vitro assessment of the antiviral potential of trans-cinnamic acid, quercetin and morin against equid herpesvirus 1. Res Vet Sci 91(3):e158–e162. https://doi.org/10.1016/j.rvsc.2010.11.010
Article
CAS
PubMed
Google Scholar
Johari J, Kianmehr A, Mustafa MR, Abubakar S, Zandi K (2012) Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus. Int J Mol Sci 13(12):16785–16795. https://doi.org/10.3390/ijms131216785
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiow KH, Phoon MC, Putti T, Tan BK, Chow VT (2016) Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pacific J Tropic Med 9(1):1–7. https://doi.org/10.1016/j.apjtm.2015.12.002
Article
CAS
Google Scholar
Thapa M, Kim Y, Desper J, Chang KO, Hua DH (2012) Synthesis and antiviral activity of substituted quercetins. Bioorg Med Chem Lett 22(1):353–356. https://doi.org/10.1016/j.bmcl.2011.10.119
Article
CAS
PubMed
Google Scholar
dos Santos AE, Kuster RM, Yamamoto KA, Salles TS, Campos R, de Meneses MD et al (2014) Quercetin and quercetin 3-O-glycosides from Bauhinia longifolia (Bong.) Steud. show anti-Mayaro virus activity. Parasit Vectors 7(1):130. https://doi.org/10.1186/1756-3305-7-130
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan D, Zhou X, Zhao C, Chen H, Zhao Y, Gong X (2011) Anti-inflammatory, antiviral and quantitative study of quercetin-3-O-β-D-glucuronide in Polygonum perfoliatum L. Fitoterapia 82(6):805–810. https://doi.org/10.1016/j.fitote.2011.04.007
Article
CAS
PubMed
Google Scholar
Qiu X, Kroeker A, He S, Kozak R, Audet J, Mbikay M et al (2016) Prophylactic efficacy of quercetin 3-β-O-d-Glucoside against Ebola virus infection. Antimicrob Agents Chemother 60(9):5182–5188. https://doi.org/10.1128/AAC.00307-16
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong G, He S, Siragam V, Bi Y, Mbikay M, Chretien M et al (2017) Antiviral activity of quercetin-3-β-O-D-glucoside against Zikavirus infection. Virol Sin 32(6):545–547. https://doi.org/10.1007/s12250-017-4057-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi HJ, Kim JH, Lee CH, Ahn YJ, Song JH, Baek SH et al (2009) Antiviral activity of quercetin 7-rhamnoside against porcine epidemic diarrhea virus. Antiviral Res 81(1):77–81. https://doi.org/10.1016/j.antiviral.2008.10.002
Article
CAS
PubMed
Google Scholar
Choi HJ, Song JH, Park KS, Kwon DH (2009) Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication. Eur J Pharm Sci 37(3-4):329–333. https://doi.org/10.1016/j.ejps.2009.03.002
Article
CAS
PubMed
Google Scholar
Nguyen TTH, Woo HJ, Kang HK, Kim YM, Kim DW, Ahn SA et al (2012) Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol Lett 34(5):831–838. https://doi.org/10.1007/s10529-011-0845-8
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao C, Xi C, Hu K, Gao W, Cai X, Qin J et al (2018) Inhibition of enterovirus 71 replication and viral 3C protease by quercetin. Virol J 15(1):116. https://doi.org/10.1186/s12985-018-1023-6
Article
CAS
PubMed
PubMed Central
Google Scholar
Senthilvel P, Lavanya P, Kumar KM, Swetha R, Anitha P, Bag S et al (2013) Flavonoid from Carica papaya inhibits NS2B-NS3 protease and prevents Dengue 2 viral assembly. Bioinformation 9(18):889–895. https://doi.org/10.6026/97320630009889
Article
PubMed
PubMed Central
Google Scholar
Chen L, Li J, Luo C, Liu H, Xu W, Chen G et al (2006) Binding interaction of quercetin-3-β-galactoside and its synthetic derivatives with SARS-CoV 3CLpro: structure-activity relationship studies reveal salient pharmacophore features. Bioorg Med Chem 14(24):8295–8306. https://doi.org/10.1016/j.bmc.2006.09.014
Article
CAS
PubMed
PubMed Central
Google Scholar
Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S, Soetjipto S (2020) Potential inhibitor of COVID-19 Main Protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints. https://doi.org/10.20944/preprints202003.0226.v1
Sampangi-Ramaiah MH, Vishwakarma R, Uma Shaanker R (2020) Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Curr Sci 118:1087–1092. https://doi.org/10.18520/cs/v118/i7/1087-1092
Article
CAS
Google Scholar
Zhang DH, Wu KL, Zhang X, Deng SQ, Peng B (2020) In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel Coronavirus. J Integr Med 18(2):152–158. https://doi.org/10.1016/j.joim.2020.02.005
Article
PubMed
PubMed Central
Google Scholar
Yang Y, Islam MS, Wang J, Li Y, Chen X (2020) Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): a review and perspective. Int J Biol Sci 16(10):1708–1717. https://doi.org/10.7150/ijbs.45538
Article
CAS
PubMed
PubMed Central
Google Scholar
Yi L, Li Z, Yuan K, Qu X, Chen J, Wang G et al (2004) Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol 78(20):11334–11339. https://doi.org/10.1128/JVI.78.20.11334-11339.2004
Article
CAS
PubMed
PubMed Central
Google Scholar
Te Velthuis AJW, van den Worm SHE, Sims AC, Baric RS, Snijder EJ, van Hemert MJ Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog 11:e1001176. https://doi.org/10.1371/journal.ppat.1001176
Kaushik N, Subramani C, Anang S, Muthumohan R, Nayak B, Ranjith-Kumar CT et al (2017) Zinc salts block hepatitis e virus replication by inhibiting the activity of viral RNA-dependent RNA polymerase. J Virol 91(21):e00754–e00717. https://doi.org/10.1128/JVI.00754-17
Article
CAS
PubMed
PubMed Central
Google Scholar
Dabbagh-Bazarbachi H, Clergeaud G, Quesada M, Ortiz M, O’Sullivan CK, Fernández-Larrea JB et al (2014) Zinc ionophore activity of quercetin and epigallocatechin-gallate: from Hepa 1-6 cells to a liposome model. J Agric Food Chem 13:8085–8093. https://doi.org/10.1021/jf5014633
Article
CAS
Google Scholar
ul Qamar MT, Alqahtani SM, Alamri MA, Chen LL (2020) Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 10(4):313–319. https://doi.org/10.1016/j.jpha.2020.03.009
Article
CAS
Google Scholar
Wahedi HM, Ahmad S, Abbasi SW (2020) Stilbene-based natural compounds as promising drug candidates against COVID-19. J Biomol Struct Dyn:1–10. https://doi.org/10.1080/07391102.2020.1762743
Williamson G, Kerimi A (2020) Testing of natural products in clinical trials targeting the SARS-CoV-2 (Covid-19) viral spike protein-angiotensin converting enzyme-2 (ACE2) interaction. Biochem Pharmacol 178:114123. https://doi.org/10.1016/j.bcp.2020.114123
Article
CAS
PubMed
PubMed Central
Google Scholar
Lam TK, Shao S, Zhao Y, Marincola F, Pesatori A, Bertazzi PA et al (2012) Influence of quercetin-rich food intake on microRNA expression in lung cancer tissues. Cancer Epidemiol Biomarkers Prev 21(12):2176–2184. https://doi.org/10.1158/1055-9965.EPI-12-0745
Article
CAS
PubMed
PubMed Central
Google Scholar
Nwaeburu C, Bauer N, Zhao Z, Abukiwan A, Gladkich J, Benner A et al (2016) Up-regulation of microRNA let-7c by quercetin inhibits pancreatic cancer progression by activation of Numbl. Oncotarget 7(36):58367–58380. https://doi.org/10.18632/oncotarget.11122
Article
PubMed
PubMed Central
Google Scholar
Li W, Liu M, Xu F, Feng Y, Che JP, Wang GC et al (2014) Combination of quercetin and hyperoside has anticancer effects on renal cancer cells through inhibition of oncogenic microRNA-27a. Oncol Rep 31(1):117–124. https://doi.org/10.3892/or.2013.2811
Article
CAS
PubMed
Google Scholar
Sardar R, Satish D, Birla S, Gupta D (2020) Comparative analyses of SAR-CoV2 genomes from different geographical locations and other coronavirus family genomes reveals unique features potentially consequential to host-virus interaction and pathogenesis. bioRxiv. https://doi.org/10.1101/2020.03.21.001586
Saçar Demirci MD, Adan A (2020) Computational analysis of microRNA-mediated interactions in SARS-CoV-2 infection. Peer J 8:e9369. https://doi.org/10.7717/peerj.9369
Article
PubMed
PubMed Central
Google Scholar
Sarma A, Phukan H, Halder N, Madanan MG (2020) An in-silico approach to study the possible interactions of miRNA between human and SARS-CoV2. Comput Biol Chem 88:107352. https://doi.org/10.1016/j.compbiolchem.2020.107352
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y et al (2020) Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature 582(7811):289–293. https://doi.org/10.1038/s41586-020-2223-y
Article
CAS
PubMed
Google Scholar
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q (2020) Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367(6485):1444–1448. https://doi.org/10.1126/science.abb2762
Article
PubMed
PubMed Central
Google Scholar
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181(2):281–292. https://doi.org/10.1016/j.cell.2020.02.058
Article
CAS
PubMed
PubMed Central
Google Scholar
Ratia K, Saikatendu KS, Santarsiero BD, Barretto N, Baker SC, Stevens RC et al (2006) Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc Natl Acad Sci USA 103(15):5717–5722. https://doi.org/10.1073/pnas.0510851103
Article
CAS
PubMed
PubMed Central
Google Scholar
Ratia K, Pegan S, Takayama J, Sleeman K, Coughlin M, Baliji S et al (2008) A noncovalent class of papain-like protease/ deubiquitinase inhibitors blocks SARS virus replication. Proc Natl Acad Sci USA 105(42):16119–16124. https://doi.org/10.1073/pnas.0805240105
Article
PubMed
PubMed Central
Google Scholar
Derosa G, Maffioli P, D’Angelo A, Di Pierro F (2020) A role for quercetin in coronavirus disease 2019 (COVID-19). Phytother Res. https://doi.org/10.1002/ptr.6887
Lee T-W, Cherney MM, Liu J, James KE, Powers JC, Eltis LD et al (2007) Crystal structures reveal an induced-fit binding of a substrate-like Aza-peptide epoxide to SARS coronavirus main peptidase. J Mol Biol 366(3):916–932. https://doi.org/10.1016/j.jmb.2006.11.078
Article
CAS
PubMed
Google Scholar
Lee T-W, Cherney MM, Huitema C, Liu J, James KE, Powers JC et al (2005) Crystal structures of the main peptidase from the SARS coronavirus inhibited by a substrate-like aza-peptide epoxide. J Mol Biol 353(5):1137–1151. https://doi.org/10.1016/j.jmb.2005.09.004
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen YW, Yiu CPB, Wong KY (2020) Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Res 9:129. https://doi.org/10.12688/f1000research.22457.2
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271–280. https://doi.org/10.1016/j.cell.2020.02.052
Article
CAS
PubMed
PubMed Central
Google Scholar
Li G, De Clercq E (2020) Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 19(3):149–150. https://doi.org/10.1038/d41573-020-00016-0
Article
CAS
PubMed
Google Scholar
Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM (2004) Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J 383:45–51. https://doi.org/10.1042/BJ20040634
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Raghuvanshi R, Ceylan FD, Bolling BW (2020) Quercetin and its metabolites inhibit recombinant human angiotensin-converting enzyme 2 (ACE2) activity. J Agric Food Chem 68(47):13982–13989. https://doi.org/10.1021/acs.jafc.0c05064
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith M, Smith JC (2020) Repurposing therapeutics for COVID-19: supercomputer-based docking to the SARS-CoV-2 viral spike protein and viral spike protein-human ACE2 interface. https://doi.org/10.26434/chemrxiv.11871402.v4
Ziebuhr J (2006) The coronavirus replicase: insights into a sophisticated enzyme machinery. In: Perlman S, Holmes KV (eds) The Nidoviruses. Advances in experimental medicine and biology Vol 581 (ISBN 978-0-387-26202-4). Springer, Boston, pp 3–11. https://doi.org/10.1007/978-0-387-33012-9_1
Chapter
Google Scholar
Chen X, Yang X, Zheng Y, Yang Y, Xing Y, Chen Z (2014) SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex. Protein Cell 5(5):369–381. https://doi.org/10.1007/s13238-014-0026-3
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L et al (2020) Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science:eabb7498. https://doi.org/10.1126/science.abb7498
Lung J, Lin Y-S, Yang Y-H, Chou Y-L, Shu L-H, Cheng Y-C et al (2020) The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. J Med Virol 92(6):693–697. https://doi.org/10.1002/jmv.25761
Article
CAS
PubMed
Google Scholar
Xu X, Liu Y, Weiss S, Arnold E, Sarafianos SG, Ding J (2003) Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design. Nucleic Acids Res 31(24):7117–7130. https://doi.org/10.1093/nar/gkg916
Article
CAS
PubMed
PubMed Central
Google Scholar
Aftab SO, Ghouri MZ, Masood MU, Haider Z, Khan Z, Ahmad A et al (2020) Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J Transl Med 18(1):275. https://doi.org/10.1186/s12967-020-02439-0
Article
CAS
PubMed
PubMed Central
Google Scholar