Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC (2007) The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 22(5):341–353
Article
PubMed
Google Scholar
Bieniek KF, Ross OA, Cormier KA, Walton RL, Soto-Ortolaza A, Johnston AE, DeSaro P, Boylan KB, Graff-Radford NR, Wszolek ZK, Rademakers R, Boeve BF, McKee AC, Dickson DW (2015) Chronic traumatic encephalopathy pathology in a neurodegenerative disorders brain bank. Acta Neuropathol 130(6):877–889
Article
CAS
PubMed
PubMed Central
Google Scholar
Blennow K, Hardy J, Zetterberg H (2012) The neuropathology and neurobiology of traumatic brain injury. Neuron 76(5):886–899
Article
CAS
PubMed
Google Scholar
Cho H, Hyeon SJ, Shin J-Y, Alvarez VE, Stein TD, Lee J, Kowall NW, McKee AC, Ryu H, Seo J-S (2020) Alterations of transcriptome signatures in head trauma-related neurodegenerative disorders. Sci Rep 10(1):8811
Article
CAS
PubMed
PubMed Central
Google Scholar
Cruz-Haces M, Tang J, Acosta G, Fernandez J, Shi R (2017) Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases. Transl Neurodegener 6(1):20
Article
PubMed
PubMed Central
Google Scholar
Montenigro PH, Corp DT, Stein TD, Cantu RC, Stern RA (2015) Chronic traumatic encephalopathy: historical origins and current perspective. Annu Rev Clin Psychol 11:309–330
Article
PubMed
Google Scholar
Woerman AL, Aoyagi A, Patel S, Kazmi SA, Lobach I, Grinberg LT, McKee AC, Seeley WW, Olson SH, Prusiner SB (2016) Tau prions from Alzheimer’s disease and chronic traumatic encephalopathy patients propagate in cultured cells. Proc Natl Acad Sci 113(50):E8187–E8196
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen XH, Johnson VE, Uryu K, Trojanowski JQ, Smith DH (2009) A lack of amyloid β plaques despite persistent accumulation of amyloid β in axons of long-term survivors of traumatic brain injury. Brain Pathol 19(2):214–223
Article
PubMed
Google Scholar
Collins-Praino L, Gutschmidt D, Sharkey J, Arulsamy A, Corrigan F (2018) Temporal changes in tau phosphorylation and related kinase and phosphatases following two models of traumatic brain injury
Hu W, Tung YC, Zhang Y, Liu F, Iqbal K (2018) Involvement of activation of asparaginyl endopeptidase in tau hyperphosphorylation in repetitive mild traumatic brain injury. J Alzheimers Dis 64(3):709–722
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu W, Tung YC, Zhang Y, Liu F, Iqbal K (2018) Involvement of activation of asparaginyl endopeptidase in tau hyperphosphorylation in repetitive mild traumatic brain injury. J Alzheimers Dis 64:709–722
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson VE, Stewart W, Smith DH (2010) Traumatic brain injury and amyloid-β pathology: a link to Alzheimer’s disease? Nat Rev Neurosci 11(5):361–370
Article
CAS
PubMed
PubMed Central
Google Scholar
Shultz SR, Wright DK, Zheng P, Stuchbery R, Liu S-J, Sashindranath M, Medcalf RL, Johnston LA, Hovens CM, Jones NC (2015) Sodium selenate reduces hyperphosphorylated tau and improves outcomes after traumatic brain injury. Brain 138(5):1297–1313
Article
PubMed
PubMed Central
Google Scholar
Shultz SR, Wright DK, Zheng P, Stuchbery R, Liu S-J, Sashindranath M, Medcalf RL, Johnston LA, Hovens CM, Jones NC, O’Brien TJ (2015) Sodium selenate reduces hyperphosphorylated tau and improves outcomes after traumatic brain injury. Brain J Neurol 138(Pt 5):1297–1313
Article
Google Scholar
Shultz SR, Wright DK, Zheng P, Stuchbery R, Liu S-J, Sashindranath M, Medcalf RL, Johnston LA, Hovens CM, Jones NC, O’Brien TJ (2015) Sodium selenate reduces hyperphosphorylated tau and improves outcomes after traumatic brain injury. Brain 138(5):1297–1313
Article
PubMed
PubMed Central
Google Scholar
Tran HT, LaFerla FM, Holtzman DM, Brody DL (2011) Controlled cortical impact traumatic brain injury in 3xTg-AD mice causes acute intra-axonal amyloid-β accumulation and independently accelerates the development of tau abnormalities. J Neurosci 31(26):9513–9525
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Guo C, Ding Y, Long X, Li W, Ke D, Wang Q, Liu R, Wang J-Z, Zhang H (2020) Blockage of AEP attenuates TBI-induced tau hyperphosphorylation and cognitive impairments in rats. Aging 12(19):19421
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Guo C, Ding Y, Long X, Li W, Ke D, Wang Q, Liu R, Wang J-Z, Zhang H, Wang X (2020) Blockage of AEP attenuates TBI-induced tau hyperphosphorylation and cognitive impairments in rats. Aging 12(19):19421–19439
Article
CAS
PubMed
PubMed Central
Google Scholar
Hellewell SC, Yan EB, Agyapomaa DA, Bye N, Morganti-Kossmann MC (2010) Post-traumatic hypoxia exacerbates brain tissue damage: analysis of axonal injury and glial responses. J Neurotrauma 27(11):1997–2010
Article
PubMed
Google Scholar
Stiefel MF, Spiotta A, Gracias VH, Garuffe AM, Guillamondegui O, Maloney-Wilensky E, Bloom S, Grady MS, LeRoux PD (2005) Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring. J Neurosurg 103(5):805–811
Article
PubMed
Google Scholar
Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99(1):4–9
Article
CAS
PubMed
Google Scholar
Basurto-Islas G, Gu J-H, Tung YC, Liu F, Iqbal K (2018) Mechanism of tau hyperphosphorylation involving lysosomal enzyme asparagine endopeptidase in a mouse model of brain ischemia. J Alzheimers Dis 63(2):821–833
Article
CAS
PubMed
Google Scholar
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche J-D, Coopersmith CM (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315(8):801–810
Article
CAS
PubMed
PubMed Central
Google Scholar
Floyd CL, Gorin FA, Lyeth BG (2005) Mechanical strain injury increases intracellular sodium and reverses Na+/Ca2+ exchange in cortical astrocytes. Glia 51(1):35–46
Article
PubMed
PubMed Central
Google Scholar
Yi J-H, Hazell AS (2006) Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 48(5):394–403
Article
CAS
PubMed
Google Scholar
Metodiewa D, Kośka C (1999) Reactive oxygen species and reactive nitrogen species: relevance to cyto (neuro) toxic events and neurologic disorders. An overview. Neurotox Res 1(3):197–233
Article
Google Scholar
Sontag E, Nunbhakdi-Craig V, Lee G, Bloom GS, Mumby MC (1996) Regulation of the phosphorylation state and microtubule-binding activity of Tau by protein phosphatase 2A. Neuron 17(6):1201–1207
Article
CAS
PubMed
Google Scholar
Johnson VE, Stewart W, Smith DH (2012) Widespread tau and amyloid-beta pathology many years after a single traumatic brain injury in humans. Brain Pathol 22(2):142–149
Article
CAS
PubMed
Google Scholar
Nematullah M, Hoda M, Khan F (2018) Protein phosphatase 2A: a double-faced phosphatase of cellular system and its role in neurodegenerative disorders. Mol Neurobiol 55(2):1750–1761
Article
CAS
PubMed
Google Scholar
Ballatore C, Lee VM-Y, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8(9):663–672
Article
CAS
PubMed
Google Scholar
Grundke-Iqbal I, Iqbal K, Tung Y-C, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci 83(13):4913–4917
Article
CAS
PubMed
PubMed Central
Google Scholar
Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of tau. Neuron 70(3):410–426
Article
CAS
PubMed
PubMed Central
Google Scholar
Thom M, Liu JY, Thompson P, Phadke R, Narkiewicz M, Martinian L, Marsdon D, Koepp M, Caboclo L, Catarino CB (2011) Neurofibrillary tangle pathology and Braak staging in chronic epilepsy in relation to traumatic brain injury and hippocampal sclerosis: a post-mortem study. Brain 134(10):2969–2981
Article
PubMed
PubMed Central
Google Scholar
Bruton C, Freeman-Browne D (1973) The aftermath of boxing. Psychol Med 3:270–303
Article
PubMed
Google Scholar
Baugh CM, Stamm JM, Riley DO, Gavett BE, Shenton ME, Lin A, Nowinski CJ, Cantu RC, McKee AC, Stern RA (2012) Chronic traumatic encephalopathy: neurodegeneration following repetitive concussive and subconcussive brain trauma. Brain Imaging Behav 6(2):244–254
Article
PubMed
Google Scholar
McKee AC, Stein TD, Kiernan PT, Alvarez VE (2015) The neuropathology of chronic traumatic encephalopathy. Brain Pathol 25(3):350–364
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson VE, Stewart W, Trojanowski JQ, Smith DH (2011) Acute and chronically increased immunoreactivity to phosphorylation-independent but not pathological TDP-43 after a single traumatic brain injury in humans. Acta Neuropathol 122(6):715–726
Article
PubMed
PubMed Central
Google Scholar
Sents W, Ivanova E, Lambrecht C, Haesen D, Janssens V (2013) The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity. FEBS J 280(2):644–661
Article
CAS
PubMed
Google Scholar
Xu Y, Chen Y, Zhang P, Jeffrey PD, Shi Y (2008) Structure of a protein phosphatase 2A holoenzyme: insights into B55-mediated Tau dephosphorylation. Mol Cell 31(6):873–885
Article
CAS
PubMed
PubMed Central
Google Scholar
Edwards G III, Zhao J, Dash PK, Soto C, Moreno-Gonzalez I (2020) Traumatic brain injury induces tau aggregation and spreading. J Neurotrauma 37(1):80–92
Article
PubMed
Google Scholar
Xu L, Ryu J, Nguyen JV, Arena J, Rha E, Vranis P, Hitt D, Marsh-Armstrong N, Koliatsos VE (2015) Evidence for accelerated tauopathy in the retina of transgenic P301S tau mice exposed to repetitive mild traumatic brain injury. Exp Neurol 273:168–176
Article
CAS
PubMed
Google Scholar
Chasseigneaux S, Clamagirand C, Huguet L, Gorisse-Hussonnois L, Rose C, Allinquant B (2014) Cytoplasmic SET induces tau hyperphosphorylation through a decrease of methylated phosphatase 2A. BMC Neurosci 15(1):1–14
Article
Google Scholar
Huber BR, Meabon JS, Martin TJ, Mourad PD, Bennett R, Kraemer BC, Cernak I, Petrie EC, Emery MJ, Swenson ER (2013) Blast exposure causes early and persistent aberrant phospho-and cleaved-tau expression in a murine model of mild blast-induced traumatic brain injury. J Alzheimers Dis 37(2):309–323
Article
CAS
PubMed
PubMed Central
Google Scholar
Austin SA, Katusic ZS (2016) Loss of endothelial nitric oxide synthase promotes p25 generation and tau phosphorylation in a murine model of Alzheimer’s disease. Circ Res 119(10):1128–1134
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramos-Cejudo J, Wisniewski T, Marmar C, Zetterberg H, Blennow K, de Leon MJ, Fossati S (2018) Traumatic brain injury and Alzheimer’s disease: the cerebrovascular link. EBioMedicine 28:21–30
Article
PubMed
PubMed Central
Google Scholar
Cheng JS, Craft R, Yu G-Q, Ho K, Wang X, Mohan G, Mangnitsky S, Ponnusamy R, Mucke L (2014) Tau reduction diminishes spatial learning and memory deficits after mild repetitive traumatic brain injury in mice. PLoS ONE 9(12):e115765
Article
PubMed
PubMed Central
Google Scholar
Kane MJ, Angoa-Pérez M, Briggs DI, Viano DC, Kreipke CW, Kuhn DM (2012) A mouse model of human repetitive mild traumatic brain injury. J Neurosci Methods 203(1):41–49
Article
PubMed
Google Scholar
Mouzon BC, Bachmeier C, Ferro A, Ojo JO, Crynen G, Acker CM, Davies P, Mullan M, Stewart W, Crawford F (2014) Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model. Ann Neurol 75(2):241–254
Article
PubMed
Google Scholar
Hoffman A, Taleski G, Sontag E (2017) The protein serine/threonine phosphatases PP2A, PP1 and calcineurin: a triple threat in the regulation of the neuronal cytoskeleton. Mol Cell Neurosci 84:119–131
Article
CAS
PubMed
Google Scholar
Sontag E, Nunbhakdi-Craig V, Lee G, Brandt R, Kamibayashi C, Kuret J, White CL, Mumby MC, Bloom GS (1999) Molecular interactions among protein phosphatase 2A, tau, and microtubules: implications for the regulation of tau phosphorylation and the development of tauopathies. J Biol Chem 274(36):25490–25498
Article
CAS
PubMed
Google Scholar
Goedert M, Cohen ES, Jakes R, Cohen P (1992) p42 MAP kinase phosphorylation sites in microtubule-associated protein tau are dephosphorylated by protein phosphatase 2A1. Implications for Alzheimer’s disease [corrected]. FEBS Lett 312(1):95–99
Article
CAS
PubMed
Google Scholar
Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2005) Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 22(8):1942–1950
Article
PubMed
Google Scholar
Qian W, Shi J, Yin X, Iqbal K, Grundke-Iqbal I, Gong CX, Liu F (2010) PP2A regulates tau phosphorylation directly and also indirectly via activating GSK-3beta. J Alzheimers Dis 19(4):1221–1229
Article
CAS
PubMed
Google Scholar
Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139(3):468–484
Article
CAS
PubMed
Google Scholar
Sontag E, Fedorov S, Kamibayashi C, Robbins D, Cobb M, Mumby M (1993) The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell 75(5):887–897
Article
CAS
PubMed
Google Scholar
Yu UY, Yoo BC, Ahn J-H (2014) Regulatory B subunits of protein phosphatase 2A are involved in site-specific regulation of tau protein phosphorylation. Korean J Physiol Pharmacol 18(2):155–161
Article
CAS
PubMed
PubMed Central
Google Scholar
Louis JV, Martens E, Borghgraef P, Lambrecht C, Sents W, Longin S, Zwaenepoel K, Pijnenborg R, Landrieu I, Lippens G (2011) Mice lacking phosphatase PP2A subunit PR61/B’δ (Ppp2r5d) develop spatially restricted tauopathy by deregulation of CDK5 and GSK3β. Proc Natl Acad Sci 108(17):6957–6962
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L-J, Wang Y-J, Tseng G-F (2010) Compression alters kinase and phosphatase activity and tau and MAP2 phosphorylation transiently while inducing the fast adaptive dendritic remodeling of underlying cortical neurons. J Neurotrauma 27(9):1657–1669
Article
PubMed
Google Scholar
Koh P-O (2013) Ferulic acid attenuates the injury-induced decrease of protein phosphatase 2A subunit B in ischemic brain injury. PLoS ONE 8(1):e54217
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolognin S, Blanchard J, Wang X, Basurto-Islas G, Tung YC, Kohlbrenner E, Grundke-Iqbal I, Iqbal K (2012) An experimental rat model of sporadic Alzheimer’s disease and rescue of cognitive impairment with a neurotrophic peptide. Acta Neuropathol 123(1):133–151
Article
CAS
PubMed
Google Scholar
Arnaud L, Chen S, Liu F, Li B, Khatoon S, Grundke-Iqbal I, Iqbal K (2011) Mechanism of inhibition of PP2A activity and abnormal hyperphosphorylation of tau by I2PP2A/SET. FEBS Lett 585(17):2653–2659
Article
CAS
PubMed
PubMed Central
Google Scholar
Arnaud L, Chen S, Liu F, Li B, Khatoon S, Grundke-Iqbal I, Iqbal K (2011) Mechanism of inhibition of PP2A activity and abnormal hyperphosphorylation of tau by I2PP2A/SET. FEBS Lett 585:2653–2659
Article
CAS
PubMed
PubMed Central
Google Scholar
Chohan MO, Khatoon S, Iqbal I-G, Iqbal K (2006) Involvement of I2PP2A in the abnormal hyperphosphorylation of tau and its reversal by Memantine. FEBS Lett 580(16):3973–3979
Article
CAS
PubMed
Google Scholar
Facchinetti P, Dorard E, Contremoulins V, Gaillard M-C, Déglon N, Sazdovitch V, Guihenneuc-Jouyaux C, Brouillet E, Duyckaerts C, Allinquant B (2014) SET translocation is associated with increase in caspase cleaved amyloid precursor protein in CA1 of Alzheimer and Down syndrome patients. Neurobiol Aging 35(5):958–968
Article
CAS
PubMed
Google Scholar
Zhao Y, Li J, Tang Q, Gao J, Chen C, Jing L, Zhang P, Li S (2014) Apolipoprotein E mimetic peptide protects against diffuse brain injury. Neural Regen Res 9(5):463
Article
CAS
PubMed
PubMed Central
Google Scholar
Laskowitz DT, McKenna SE, Song P, Wang H, Durham L, Yeung N, Christensen D, Vitek MP (2007) COG1410, a novel apolipoprotein E-based peptide, improves functional recovery in a murine model of traumatic brain injury. J Neurotrauma 24(7):1093–1107
Article
PubMed
Google Scholar
Shin M-K, Vázquez-Rosa E, Koh Y, Dhar M, Chaubey K, Cintrón-Pérez CJ, Barker S, Miller E, Franke K, Noterman MF (2021) Reducing acetylated tau is neuroprotective in brain injury. Cell 184(10):2715-2732.e2723
Article
CAS
PubMed
PubMed Central
Google Scholar
Pasinetti GM (2012) Role of olfactory receptors in traumatic brain injury-associated tauopathy. Biological psychiatry. Elsevier
Google Scholar
Wang Y, Mandelkow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17(1):22–35
Article
CAS
Google Scholar
Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14(2):128–142
Article
CAS
PubMed
PubMed Central
Google Scholar
Li M, Makkinje A, Damuni Z (1996) The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A (∗). J Biol Chem 271(19):11059–11062
Article
CAS
PubMed
Google Scholar
Enevoldsen EM, Cold G, Jensen FT, Malmros R (1976) Dynamic changes in regional CBF, intraventricular pressure, CSF pH and lactate levels during the acute phase of head injury. J Neurosurg 44(2):191–214
Article
CAS
PubMed
Google Scholar
Castejón O (2004) Lysosome abnormalities and lipofucsin content of nerve cells of oedematous human cerebral cortex. J Submicrosc Cytol Pathol 36(3–4):265–271
Google Scholar
Ishizaki T, Erickson A, Kuric E, Shamloo M, Hara-Nishimura I, Inácio ARL, Wieloch T, Ruscher K (2010) The asparaginyl endopeptidase legumain after experimental stroke. J Cereb Blood Flow Metab 30(10):1756–1766
Article
CAS
PubMed
PubMed Central
Google Scholar
Arif M, Wei J, Zhang Q, Liu F, Basurto-Islas G, Grundke-Iqbal I, Iqbal K (2014) Cytoplasmic retention of protein phosphatase 2A inhibitor 2 (I2PP2A) induces Alzheimer-like abnormal hyperphosphorylation of Tau. J Biol Chem 289(40):27677–27691
Article
CAS
PubMed
PubMed Central
Google Scholar
Stern RA, Daneshvar DH, Baugh CM, Seichepine DR, Montenigro PH, Riley DO, Fritts NG, Stamm JM, Robbins CA, McHale L (2013) Clinical presentation of chronic traumatic encephalopathy. Neurology 81(13):1122–1129
Article
PubMed
PubMed Central
Google Scholar
Sontag J-M, Nunbhakdi-Craig V, Montgomery L, Arning E, Bottiglieri T, Sontag E (2008) Folate deficiency induces in vitro and mouse brain region-specific downregulation of leucine carboxyl methyltransferase-1 and protein phosphatase 2A Bα subunit expression that correlate with enhanced tau phosphorylation. J Neurosci 28(45):11477–11487
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan XL, Wright DK, Liu S, Hovens C, O’Brien TJ, Shultz SR (2016) Sodium selenate, a protein phosphatase 2A activator, mitigates hyperphosphorylated tau and improves repeated mild traumatic brain injury outcomes. Neuropharmacology 108:382–393
Article
CAS
PubMed
Google Scholar
Marchese FP, Aubareda A, Tudor C, Saklatvala J, Clark AR, Dean JL (2010) MAPKAP kinase 2 blocks tristetraprolin-directed mRNA decay by inhibiting CAF1 deadenylase recruitment. J Biol Chem 285(36):27590–27600
Article
CAS
PubMed
PubMed Central
Google Scholar
Cipriani R, Chara JC, Rodríguez-Antigüedad A, Matute C (2015) FTY720 attenuates excitotoxicity and neuroinflammation. J Neuroinflamm 12(1):1–14
Article
Google Scholar
Sangodkar J, Farrington CC, McClinch K, Galsky MD, Kastrinsky DB, Narla G (2016) All roads lead to PP 2A: exploiting the therapeutic potential of this phosphatase. FEBS J 283(6):1004–1024
Article
CAS
PubMed
Google Scholar
Ross E, Naylor A, O’neil J, Crowley T, Ridley M, Crowe J, Smallie T, Tang T, Turner J, Norling L (2017) Treatment of inflammatory arthritis via targeting of tristetraprolin, a master regulator of pro-inflammatory gene expression. Ann Rheum Dis 76(3):612–619
Article
CAS
PubMed
Google Scholar
Yin J, Li R, Liu W, Chen Y, Zhang X, Li X, He X, Duan C (2018) Neuroprotective effect of protein phosphatase 2A/tristetraprolin following subarachnoid hemorrhage in rats. Front Neurosci 12:96
Article
PubMed
PubMed Central
Google Scholar
Kondo A, Shahpasand K, Mannix R, Qiu J, Moncaster J, Chen C-H, Yao Y, Lin Y-M, Driver JA, Sun Y (2015) Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature 523(7561):431–436
Article
PubMed
PubMed Central
Google Scholar
Seo J-S, Lee S, Shin J-Y, Hwang YJ, Cho H, Yoo S-K, Kim Y, Lim S, Kim YK, Hwang EM (2017) Transcriptome analyses of chronic traumatic encephalopathy show alterations in protein phosphatase expression associated with tauopathy. Exp Mol Med 49(5):e333–e333
Article
CAS
PubMed
PubMed Central
Google Scholar
Seo J-S, Lee S, Shin J-Y, Hwang YJ, Cho H, Yoo S-K, Kim Y, Lim S, Kim YK, Hwang EM, Kim SH, Kim C-H, Hyeon SJ, Yun J-Y, Kim J, Kim Y, Alvarez VE, Stein TD, Lee J, Kim DJ, Kim J-I, Kowall NW, Ryu H, McKee AC (2017) Transcriptome analyses of chronic traumatic encephalopathy show alterations in protein phosphatase expression associated with tauopathy. Exp Mol Med 49(5):e333–e333
Article
CAS
PubMed
PubMed Central
Google Scholar
Basurto-Islas G, Grundke-Iqbal I, Tung YC, Liu F, Iqbal K (2013) Activation of asparaginyl endopeptidase leads to Tau hyperphosphorylation in Alzheimer disease. J Biol Chem 288(24):17495–17507
Article
CAS
PubMed
PubMed Central
Google Scholar
Iqbal K, Bolognin S, Wang X, Basurto-Islas G, Blanchard J, Tung YC (2013) Animal models of the sporadic form of Alzheimer’s disease: focus on the disease and not just the lesions. J Alzheimers Dis 37(3):469–474
Article
PubMed
Google Scholar
Castellani RJ, Perry G (2017) Dementia pugilistica revisited. J Alzheimers Dis 60(4):1209–1221
Article
PubMed
PubMed Central
Google Scholar
Corsellis J, Bruton C, Freeman-Browne D (1973) The aftermath of boxing1. Psychol Med 3(3):270–303
Article
CAS
PubMed
Google Scholar
Katsumoto A, Takeuchi H, Tanaka F (2019) Tau pathology in chronic traumatic encephalopathy and Alzheimer’s disease: similarities and differences. Front Neurol 10:980
Article
PubMed
PubMed Central
Google Scholar
Hawkins BE, Krishnamurthy S, Castillo-Carranza DL, Sengupta U, Prough DS, Jackson GR, DeWitt DS, Kayed R (2013) Rapid accumulation of endogenous tau oligomers in a rat model of traumatic brain injury: possible link between traumatic brain injury and sporadic tauopathies. J Biol Chem 288(23):17042–17050
Article
CAS
PubMed
PubMed Central
Google Scholar
Sacramento CB, Sondhi D, Rosenberg JB, Chen A, Giordano S, Pey E, Lee V, Stiles KM, Havlicek DF, Leopold PL (2020) Anti-phospho-tau gene therapy for chronic traumatic encephalopathy. Hum Gene Ther 31(1–2):57–69
Article
CAS
PubMed
Google Scholar
Min S-W, Cho S-H, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, Huang EJ, Shen Y, Masliah E, Mukherjee C (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67(6):953–966
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu KP, Kondo A, Albayram O, Herbert MK, Liu H, Zhou XZ (2016) Potential of the antibody against cis-phosphorylated tau in the early diagnosis, treatment, and prevention of Alzheimer disease and brain injury. JAMA Neurol 73(11):1356–1362
Article
PubMed
Google Scholar
Yang Z, Lin F, Robertson CS, Wang KK (2014) Dual vulnerability of TDP-43 to calpain and caspase-3 proteolysis after neurotoxic conditions and traumatic brain injury. J Cereb Blood Flow Metab 34(9):1444–1452
Article
CAS
PubMed
PubMed Central
Google Scholar
Ling JP, Pletnikova O, Troncoso JC, Wong PC (2015) TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 349(6248):650–655
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Zhou T, Wang Y, Ning C, Lv Z, Han G, Morris J, Taylor E, Wang R, Xiao H (2017) The protumorigenic potential of FTY720 by promoting extramedullary hematopoiesis and MDSC accumulation. Oncogene 36(26):3760–3771
Article
CAS
PubMed
Google Scholar
Christensen DJ, Ohkubo N, Oddo J, Van Kanegan MJ, Neil J, Li F, Colton CA, Vitek MP (2011) Apolipoprotein E and peptide mimetics modulate inflammation by binding the SET protein and activating protein phosphatase 2A. J Immunol 186(4):2535–2542
Article
CAS
PubMed
Google Scholar
Taleski G, Sontag E (2018) Protein phosphatase 2A and tau: an orchestrated ‘Pas de Deux. FEBS Lett 592:1079–1095
Article
CAS
PubMed
Google Scholar
Ojo JO, Mouzon BC, Crawford F (2016) Repetitive head trauma, chronic traumatic encephalopathy and tau: challenges in translating from mice to men. Exp Neurol 275:389–404
Article
PubMed
Google Scholar
Khan S, Ali A, Kadir B, Ahmed Z, Di Pietro V (2021) Effects of memantine in patients with traumatic brain injury. ReCALL 9:13
Google Scholar
Mei Z, Qiu J, Alcon S, Hashim J, Rotenberg A, Sun Y, Meehan WP III, Mannix R (2018) Memantine improves outcomes after repetitive traumatic brain injury. Behav Brain Res 340:195–204
Article
CAS
PubMed
Google Scholar
Kickstein E, Krauss S, Thornhill P, Rutschow D, Zeller R, Sharkey J, Williamson R, Fuchs M, Köhler A, Glossmann H (2010) Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc Natl Acad Sci 107(50):21830–21835
Article
CAS
PubMed
PubMed Central
Google Scholar
Rahimi S, Ferdowsi A, Siahposht-Khachaki A (2020) Neuroprotective effects of metformin on traumatic brain injury in rats is associated with the AMP-activated protein kinase signaling pathway. Metab Brain Dis 35(7):1135–1144
Article
PubMed
Google Scholar
Zhao W, Varghese M, Ho L, Dams-O’Connor K, Gordon W, Pasinetti G (2012) P3-029: Role of olfactory receptors in traumatic brain injury-associated tauopathy. Alzheimer’s Dement 8(4S_Part_13):P464–P464
Article
Google Scholar