Botha MH, Rajaram S, Karunaratne K (2018) Cancer in pregnancy. Int J Gynecol Obstet 143:137–142. https://doi.org/10.1002/ijgo.12621
Article
Google Scholar
Abdalla N, Bizoń M, Piórkowski R, Stanirowski P, Cendrowski K, Sawicki W (2017) Does chemotherapy for gynecological malignancies during pregnancy cause fetal growth restriction? BioMed Res Int. https://doi.org/10.1155/2017/7543421
Article
PubMed
PubMed Central
Google Scholar
Milojkovic D, Apperley JF (2014) How I treat leukemia during pregnancy. Blood 123:974–984. https://doi.org/10.1182/blood-2013-08-283580
Article
CAS
PubMed
Google Scholar
Eastwood-Wilshere N, Turner J, Oliveira N, Morton A (2019) Cancer in Pregnancy. Asia Pac J Clin Oncol 15:296–308. https://doi.org/10.1111/ajco.13235
Article
PubMed
Google Scholar
Bavanilathamuthiah, Lakshmanan Y, Ratnaprabha P (2016) Developmental toxicity of arsenic and its underlying mechanisms in the early embryonic development. Res J Pharm Tech 9:340–344. https://doi.org/10.5958/0974-360X.2016.00060.3
Article
Google Scholar
Yang Y, Zhang Z, Zhang H, Hong K, Tang W, Zhao L, Lin H, Liu D, Mao J, Wu H, Jiang H (2017) Effects of maternal acrolein exposure during pregnancy on testicular testosterone production in fetal rats. Mol Med Rep 16:491–498. https://doi.org/10.3892/mmr.2017.6624
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Liu J, Zhao D, Ma N, Luan Y (2016) Highly enhanced leukemia therapy and oral bioavailability from a novel amphiphilic prodrug of cytarabine. RSC Adv 6:35991–35999. https://doi.org/10.1039/C6RA02051H
Article
CAS
Google Scholar
Reese ND, Schiller GJ (2013) High-dose cytarabine (HD araC) in the treatment of leukemias: a review. Curr Hematol Malig Rep 8:141–148. https://doi.org/10.1007/s11899-013-0156-3
Article
PubMed
Google Scholar
Hamada A, Kawaguchi T, Nakano M (2002) Clinical pharmacokinetics of cytarabine formulations. Clin Pharmacokinet 41:705–718. https://doi.org/10.2165/00003088-200241100-00002
Article
CAS
PubMed
Google Scholar
Faruqi A, Tadi P (2021) Cytarabine. In: StatPearls. StatPearls Publishing, Treasure Island
Namoju R, Chilaka NK (2021) Alpha-lipoic acid ameliorates cytarabine-induced developmental anomalies in rat fetus. Hum Exp Toxicol 40:851–868. https://doi.org/10.1177/0960327120975114
Article
CAS
PubMed
Google Scholar
Namoju RC, Khan S, Patel RS, Shera FY, Trivedi PP, Kushwaha S, Jena GB (2014) Pre-pubertal exposure of cytarabine-induced testicular atrophy, impaired spermatogenesis and germ cell DNA damage in SD rats. Toxicol Mech Methods 24:703–712. https://doi.org/10.3109/15376516.2014.970679
Article
CAS
PubMed
Google Scholar
Patel RS, Rachamalla M, Chary NR, Shera FY, Tikoo K, Jena G (2012) Cytarabine induced cerebellar neuronal damage in juvenile rat: correlating neurobehavioral performance with cellular and genetic alterations. Toxicology 293:41–52. https://doi.org/10.1016/j.tox.2011.12.005
Article
CAS
PubMed
Google Scholar
Yamauchi H, Katayama K, Ueno M, Uetsuka K, Nakayama H, Doi K (2004) Involvement of p53 in 1-beta-D-arabinofuranosylcytosine-induced trophoblastic cell apoptosis and impaired proliferation in rat placenta. Biol Reprod 70:1762–1767. https://doi.org/10.1095/biolreprod.103.026252
Article
CAS
PubMed
Google Scholar
Magina KN, Pregartner G, Zebisch A, Wölfler A, Neumeister P, Greinix HT, Berghold A, Sill H (2017) Cytarabine dose in the consolidation treatment of AML: a systematic review and meta-analysis. Blood 130:946–948. https://doi.org/10.1182/blood-2017-04-777722
Article
CAS
PubMed
Google Scholar
Stentoft J (1990) The toxicity of cytarabine. Drug Saf 5:7–27. https://doi.org/10.2165/00002018-199005010-00003
Article
CAS
PubMed
Google Scholar
Zaletel LZ, Bratanic N, Jereb B (2004) Gonadal function in patients treated for leukemia in childhood. Leuk Lymphoma 45:1797–1802. https://doi.org/10.1080/1042819042000219458
Article
CAS
PubMed
Google Scholar
Parente E, Colannino G, Picconi O, Monastra G (2017) Safety of oral alpha-lipoic acid treatment in pregnant women: a retrospective observational study. Eur Rev Med Pharmacol Sci 21:4219–4227
CAS
PubMed
Google Scholar
Moura FA, de Andrade KQ, dos Santos JCF, Goulart MOF (2015) Lipoic acid: its antioxidant and anti-inflammatory role and clinical applications. Curr Top Med Chem 15:458–483. https://doi.org/10.2174/1568026615666150114161358
Article
CAS
PubMed
Google Scholar
Park S, Karunakaran U, Jeoung NH, Jeon JH, Lee IK (2014) Physiological effect and therapeutic application of alpha lipoic acid. Curr Med Chem 21:3636–3645. https://doi.org/10.2174/0929867321666140706141806
Article
CAS
PubMed
Google Scholar
Gomes MB, Negrato CA (2014) Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases. Diabetol Metab Syndr 6:80. https://doi.org/10.1186/1758-5996-6-80
Article
CAS
PubMed
PubMed Central
Google Scholar
Micili SC, Goker A, Kuscu K, Ergur BU, Fuso A (2019) α-Lipoic acid vaginal administration contrasts inflammation and preterm delivery in rats. Reprod Sci Thousand Oaks Calif 26:128–138. https://doi.org/10.1177/1933719118766266
Article
CAS
Google Scholar
Monastra G, De Grazia S, Cilaker Micili S, Goker A, Unfer V (2016) Immunomodulatory activities of alpha lipoic acid with a special focus on its efficacy in preventing miscarriage. Expert Opin Drug Deliv 13:1695–1708. https://doi.org/10.1080/17425247.2016.1200556
Article
CAS
PubMed
Google Scholar
Anto SK, Koyada N, Khan S, Jena G (2016) α-Lipoic acid attenuates transplacental nicotine-induced germ cell and oxidative DNA damage in adult mice. J Basic Clin Physiol Pharmacol 27:585–593. https://doi.org/10.1515/jbcpp-2015-0151
Article
CAS
PubMed
Google Scholar
Koga T, Ishida T, Takeda T, Ishii Y, Uchi H, Tsukimori K, Yamamoto M, Himeno M, Furue M, Yamada H (2012) Restoration of dioxin-induced damage to fetal steroidogenesis and gonadotropin formation by maternal co-treatment with α-lipoic acid. PLoS ONE 7:e40322. https://doi.org/10.1371/journal.pone.0040322
Article
CAS
PubMed
PubMed Central
Google Scholar
Takeda T, Matsuo Y, Nishida K, Fujiki A, Hattori Y, Koga T, Ishii Y, Yamada H (2017) α-Lipoic acid potentially targets AMP-activated protein kinase and energy production in the fetal brain to ameliorate dioxin-produced attenuation in fetal steroidogenesis. J Toxicol Sci 42:13–23. https://doi.org/10.2131/jts.42.13
Article
PubMed
Google Scholar
Prathima P, Venkaiah K, Pavani R, Daveedu T, Munikumar M, Gobinath M, Valli M, Sainath SB (2017) α-lipoic acid inhibits oxidative stress in testis and attenuates testicular toxicity in rats exposed to carbimazole during embryonic period. Toxicol Rep 4:373–381. https://doi.org/10.1016/j.toxrep.2017.06.009
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan RA (2018) Natural products chemistry: the emerging trends and prospective goals. Saudi Pharm J SPJ Off Publ Saudi Pharm Soc 26:739–753. https://doi.org/10.1016/j.jsps.2018.02.015
Article
Google Scholar
Wu K, Li Y, Pan P, Li Z, Yu Y, Huang J, Ma F, Tian L, Fang Y, Wang Y, Lin H, Ge RS (2020) Gestational vinclozolin exposure suppresses fetal testis development in rats. Ecotoxicol Environ Saf 203:111053. https://doi.org/10.1016/j.ecoenv.2020.111053
Article
CAS
PubMed
Google Scholar
Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3
Article
CAS
PubMed
Google Scholar
Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394. https://doi.org/10.1016/0003-2697(72)90132-7
Article
CAS
PubMed
Google Scholar
Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195. https://doi.org/10.1016/0003-9861(78)90479-4
Article
CAS
PubMed
Google Scholar
Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. https://doi.org/10.1016/0003-9861(59)90090-6
Article
CAS
PubMed
Google Scholar
Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590. https://doi.org/10.1126/science.179.4073.588
Article
CAS
PubMed
Google Scholar
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275
CAS
PubMed
Google Scholar
McCann D, Kirkish L (1985) Evaluation of free testosterone in serum. J Clin Immunoassay 8:234–236
CAS
Google Scholar
Napso T, Hung YP, Davidge ST, Care AS, Sferruzzi-Perri AN (2019) Advanced maternal age compromises fetal growth and induces sex-specific changes in placental phenotype in rats. Sci Rep 9:16916. https://doi.org/10.1038/s41598-019-53199-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Guzmán DC, Brizuela NO, Herrera MO, Olguín HJ, García EH, Peraza AV, Mejía GB (2016) Oleic acid protects against oxidative stress exacerbated by cytarabine and doxorubicin in rat brain. Anticancer Agents Med Chem 16:1491–1495. https://doi.org/10.2174/1871520615666160504093652
Article
CAS
PubMed
Google Scholar
Hernández García E, Osnaya Brizuela N, Valenzuela Peraza A, Calderón Guzmán D, Ortiz Herrera M, Juárez Olguín H, Barragán Mejía G, Santamaría Del Ángel D, Rojas Ochoa A (2018) Biochemical and histological changes produced by sweeteners and cytarabine in the brain of young rats. Nutr Hosp 35:194–200. https://doi.org/10.20960/nh.1245
Laforgia N, Di Mauro A, Favia Guarnieri G, Varvara D, De Cosmo L, Panza R, Capozza M, Baldassarre ME, Resta N (2018) The role of oxidative stress in the pathomechanism of congenital malformations. Oxid Med Cell Longev. https://doi.org/10.1155/2018/7404082
Article
PubMed
PubMed Central
Google Scholar
Schoots MH, Gordijn SJ, Scherjon SA, van Goor H, Hillebrands JL (2018) Oxidative stress in placental pathology. Placenta 69:153–161. https://doi.org/10.1016/j.placenta.2018.03.003
Article
CAS
PubMed
Google Scholar
Sankaran S, Kyle PM (2009) Aetiology and pathogenesis of IUGR. Best Pract Res Clin Obstet Gynaecol 23:765–777. https://doi.org/10.1016/j.bpobgyn.2009.05.003
Article
PubMed
Google Scholar
Woods L, Perez-Garcia V, Hemberger M (2018) Regulation of placental development and its impact on fetal growth-new insights from mouse models. Front Endocrinol 9:570. https://doi.org/10.3389/fendo.2018.00570
Article
Google Scholar
Al Ghafli MHM, Padmanabhan R, Kataya HH, Berg B (2004) Effects of alpha-lipoic acid supplementation on maternal diabetes-induced growth retardation and congenital anomalies in rat fetuses. Mol Cell Biochem 261:123–135. https://doi.org/10.1023/b:mcbi.0000028747.92084.42
Article
CAS
PubMed
Google Scholar
Padmanabhan R, Mohamed S, Singh S (2006) Beneficial effect of supplemental lipoic acid on diabetes-induced pregnancy loss in the mouse. Ann N Y Acad Sci 1084:118–131. https://doi.org/10.1196/annals.1372.015
Article
CAS
PubMed
Google Scholar
Aitken RJ (2017) Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol Reprod Dev 84:1039–1052. https://doi.org/10.1002/mrd.22871
Article
CAS
PubMed
Google Scholar
van den Driesche S, Kilcoyne KR, Wagner I, Rebourcet D, Boyle A, Mitchell R, McKinnell C, Macpherson S, Donat R, Shukla CJ, Jorgensen A, Meyts ERD, Skakkebaek NE, Sharpe RM (2017) Experimentally induced testicular dysgenesis syndrome originates in the masculinization programming window. JCI Insight 2:e91204. https://doi.org/10.1172/jci.insight.91204
Article
PubMed
PubMed Central
Google Scholar
Tyagi V, Scordo M, Yoon RS, Liporace FA, Greene LW (2017) Revisiting the role of testosterone: are we missing something? Rev Urol 19:16–24. https://doi.org/10.3909/riu0716
Article
PubMed
PubMed Central
Google Scholar
Sharpe RM (2020) Androgens and the masculinization programming window: human-rodent differences. Biochem Soc Trans 48:1725–1735. https://doi.org/10.1042/BST20200200
Article
CAS
PubMed
PubMed Central
Google Scholar
Salehi B, Berkay Yılmaz Y, Antika G, Boyunegmez Tumer T, Fawzi Mahomoodally M, Lobine D, Akram M, Riaz M, Capanoglu E, Sharopov F, Martins N, Cho WC, Sharifi-Rad J (2019) Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules 9:E356. https://doi.org/10.3390/biom9080356
Article
CAS
PubMed
Google Scholar
Solmonson A, DeBerardinis RJ (2018) Lipoic acid metabolism and mitochondrial redox regulation. J Biol Chem 293:7522–7530. https://doi.org/10.1074/jbc.TM117.000259
Article
CAS
PubMed
Google Scholar
Costantino M, Guaraldi C, Costantino D (2016) Resolution of subchorionic hematoma and symptoms of threatened miscarriage using vaginal alpha lipoic acid or progesterone: clinical evidences. Eur Rev Med Pharmacol Sci 20:1656–1663
CAS
PubMed
Google Scholar
Grandi G, Pignatti L, Ferrari F, Dante G, Neri I, Facchinetti F (2017) Vaginal alpha-lipoic acid shows an anti-inflammatory effect on the cervix, preventing its shortening after primary tocolysis. A pilot, randomized, placebo-controlled study. J Matern-Fetal Neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet 30:2243–2249. https://doi.org/10.1080/14767058.2016.1245282
Article
CAS
Google Scholar
Porcaro G, Brillo E, Giardina I, Di Iorio R (2015) Alpha Lipoic Acid (ALA) effects on subchorionic hematoma: preliminary clinical results. Eur Rev Med Pharmacol Sci 19:3426–3432
CAS
PubMed
Google Scholar
Sugimura Y, Murase T, Kobayashi K, Oyama K, Hayasaka S, Kanou Y, Oiso Y, Murata Y (2009) Alpha-lipoic acid reduces congenital malformations in the offspring of diabetic mice. Diabetes Metab Res Rev 25:287–294. https://doi.org/10.1002/dmrr.947
Article
CAS
PubMed
Google Scholar
Singh K, Bhori M, Kasu YA, Bhat G, Marar T (2018) Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity—exploring the armoury of obscurity. Saudi Pharm J SPJ Off Publ Saudi Pharm Soc 26:177–190. https://doi.org/10.1016/j.jsps.2017.12.013
Article
Google Scholar