Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H (2016) Gastric cancer. Lancet (London, England) 388(10060):2654–2664. https://doi.org/10.1016/S0140-6736(16)30354-3
Article
CAS
Google Scholar
Hashem TAA, El-Fotouh MA, Ehab A, El Rebey HS, Satar MA, Attallah HS (2016) Her-2 neu status in gastric carcinoma in Egyptian patients: The epidemiology and the response to chemotherapy. Menoufia Med J 29(2):449. https://doi.org/10.4103/1110-2098.192437
Article
Google Scholar
Liu X, Wu J, Zhang D, Bing Z, Tian J, Ni M, Zhang X, Meng Z, Liu S (2018) Identification of potential key genes associated with the pathogenesis and prognosis of gastric cancer based on integrated bioinformatics analysis. Front Genet 9:265. https://doi.org/10.3389/fgene.2018.00265
Article
CAS
Google Scholar
Wu KZ, Xu XH, Zhan CP, Li J, Jiang JL (2020) Identification of a nine-gene prognostic signature for gastric carcinoma using integrated bioinformatics analyses. World J Gastrointest Oncol 12(9):975
Article
Google Scholar
Tao J, Zhi X, Tian Y, Li Z, Zhu Y, Wang W, Xu Z (2014) CEP55 contributes to human gastric carcinoma by regulating cell proliferation. Tumor Biol 35(5):4389–4399. https://doi.org/10.1007/s13277-013-1578-1
Article
CAS
Google Scholar
Declerck PJ, Gils A. Three decades of research on plasminogen activator inhibitor-1: a multifaceted serpin. In Seminars in thrombosis and hemostasis (Vol. 39, No. 04, pp. 356–364). Thieme Medical Publishers (2013). https://doi.org/10.1055/s-0033-1334487
Fang H, Placencio VR, DeClerck YA (2012) Protumorigenic activity of plasminogen activator inhibitor-1 through an antiapoptotic function. J Natl Cancer Inst 104(19):1470–1484. https://doi.org/10.1093/jnci/djs377
Article
CAS
Google Scholar
Schmitt M, Harbeck N, Thomssen C, Wilhelm O, Magdolen V, Reuning U, Graeff H (1997) Clinical impact of the plasminogen activation system in tumor invasion and metastasis: prognostic relevance and target for therapy. Thromb Haemost 78(07):285–296. https://doi.org/10.1055/s-0038-1657541
Article
CAS
Google Scholar
Wang J, Li J, Gu J, Yu J, Guo S, Zhu Y, Ye D (2015) Abnormal methylation status of FBXW10 and SMPD3, and associations with clinical characteristics in clear cell renal cell carcinoma. Oncol Lett 10(5):3073–3080. https://doi.org/10.3892/ol.2015.3707
Article
CAS
Google Scholar
Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9(2):139–150. https://doi.org/10.1038/nrm2329
Article
CAS
Google Scholar
Yabu T, Shiba H, Shibasaki Y, Nakanishi T, Imamura S, Touhata K, Yamashita M (2015) Stress-induced ceramide generation and apoptosis via the phosphorylation and activation of nSMase1 by JNK signaling. Cell Death Differ 22(2):258–273. https://doi.org/10.1038/cdd.2014.128
Article
CAS
Google Scholar
Bhati R, Patterson C, Livasy CA, Fan C, Ketelsen D, Hu Z, Klauber-DeMore N (2008) Molecular characterization of human breast tumor vascular cells. Am J Pathol 172(5):1381–1390. https://doi.org/10.2353/ajpath.2008.070988
Article
CAS
Google Scholar
Kim WJ, Okimoto RA, Purton LE, Goodwin M, Haserlat SM, Dayyani F, Haber DA (2008) Mutations in the neutral sphingomyelinase gene SMPD3 implicate the ceramide pathway in human leukemias. Blood J Am Soc Hematol 111(9):4716–4722. https://doi.org/10.1182/blood-2007-10-113068
Article
CAS
Google Scholar
Zhong L, Kong JN, Dinkins MB, Leanhart S, Zhu Z, Spassieva SD, Bieberich E (2018) Increased liver tumor formation in neutral sphingomyelinase-2-deficient mice. J Lipid Res 59(5):795–804. https://doi.org/10.1194/jlr.M080879
Article
CAS
Google Scholar
Shrestha B, Dunn L (2019) The declaration of helsinki on medical research involving human subjects: a review of seventh revision. J Nepal Health Res Council 17(4):548–552
Article
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 2001;25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
Thrift AP, El-Serag HB (2020) Burden of gastric cancer. Clin Gastroenterol Hepatol 18(3):534–542. https://doi.org/10.1016/j.cgh.2019.07.045
Article
Google Scholar
Zhao L, Jiang L, He L, Wei Q, Bi J, Wang Y, Wei M (2019) Identification of a novel cell cycle-related gene signature predicting survival in patients with gastric cancer. J Cell Physiol 234(5):6350–6360. https://doi.org/10.1002/jcp.27365
Article
CAS
Google Scholar
Chen CH, Chien CY, Huang CC, Hwang CF, Chuang HC, Fang FM, Huang CY (2009) Expression of FLJ10540 is correlated with aggressiveness of oral cavity squamous cell carcinoma by stimulating cell migration and invasion through increased FOXM1 and MMP-2 activity. Oncogene 28(30):2723–2737. https://doi.org/10.1038/onc.2009.128
Article
CAS
Google Scholar
Sakai M, Shimokawa T, Kobayashi T, Matsushima S, Yamada Y, Nakamura Y, Furukawa Y (2006) Elevated expression of C10orf3 (chromosome 10 open reading frame 3) is involved in the growth of human colon tumor. Oncogene 25(3):480–486. https://doi.org/10.1038/sj.onc.1209051
Article
CAS
Google Scholar
Chen CH, Lu PJ, Chen YC, Fu SL, Wu KJ, Tsou AP, Chou CK (2007) FLJ10540-elicited cell transformation is through the activation of PI3-kinase/AKT pathway. Oncogene 26(29):4272–4283. https://doi.org/10.1038/sj.onc.1210207
Article
CAS
Google Scholar
Chen CH, Lai JM, Chou TY, Chen CY, Su LJ, Lee YC, Huang CYF (2009) VEGFA upregulates FLJ10540 and modulates migration and invasion of lung cancer via PI3K/AKT pathway. PloS one 4(4):e5052. https://doi.org/10.1371/journal.pone.0005052
Article
CAS
Google Scholar
Li F, Jin D, Tang C, Gao D (2018) CEP55 promotes cell proliferation and inhibits apoptosis via the PI3K/Akt/p21 signaling pathway in human glioma U251 cells. Oncol Lett 15(4):4789–4796. https://doi.org/10.3892/ol.2018.7934
Article
CAS
Google Scholar
Wang G, Liu M, Wang H, Yu S, Jiang Z, Sun J, Guo M (2016) Centrosomal protein of 55 regulates glucose metabolism, proliferation and apoptosis of glioma cells via the Akt/mTOR signaling pathway. J Cancer 7(11):1431. https://doi.org/10.7150/jca.15497
Article
CAS
Google Scholar
Wang Y, Jin T, Dai X, Xu J (2016) Lentivirus-mediated knockdown of CEP55 suppresses cell proliferation of breast cancer cells. Biosci Trends 10(1):67–73. https://doi.org/10.5582/bst.2016.01010
Article
CAS
Google Scholar
Chen S, Li Y, Zhu Y, Fei J, Song L, Sun G, Li X (2022) SERPINE1 overexpression promotes malignant progression and poor prognosis of gastric cancer. J Oncol. https://doi.org/10.1155/2022/2647825
Article
Google Scholar
Li L, Zhu Z, Zhao Y, Zhang Q, Wu X, Miao B, Fei S (2019) FN1, SPARC, and SERPINE1 are highly expressed and significantly related to a poor prognosis of gastric adenocarcinoma revealed by microarray and bioinformatics. Sci Rep 9(1):1–9. https://doi.org/10.1038/s41598-019-43924-x
Article
CAS
Google Scholar
Liao P, Li W, Liu R, Teer JK, Xu B, Zhang W, He Y (2018) Genome-scale analysis identifies SERPINE1 and SPARC as diagnostic and prognostic biomarkers in gastric cancer. Onco Targets Ther 11:6969. https://doi.org/10.2147/OTT.S173934
Article
CAS
Google Scholar
Pavón MA, Arroyo-Solera I, Céspedes MV, Casanova I, León X, Mangues R. uPA/uPAR and SERPINE1 in head and neck cancer: role in tumor resistance, metastasis, prognosis and therapy. Oncotarget, 2016;7(35), 57351. https://doi.org/10.18632/oncotarget.10344
Yang JD, Ma L, Zhu Z (2019) SERPINE1 as a cancer-promoting gene in gastric adenocarcinoma: facilitates tumour cell proliferation, migration, and invasion by regulating EMT. J Chemother 31(7–8):408–418. https://doi.org/10.1080/1120009X.2019.1687996
Article
CAS
Google Scholar
Xu B, Bai Z, Yin J, Zhang Z (2019) Global transcriptomic analysis identifies SERPINE1 as a prognostic biomarker associated with epithelial-to-mesenchymal transition in gastric cancer. PeerJ 7:e7091. https://doi.org/10.7717/peerj.7091
Article
Google Scholar
Li XC, Wang S, Zhu JR, Wang YP, Zhou YN (2020) Nomograms combined with SERPINE1-related module genes predict overall and recurrence-free survival after curative resection of gastric cancer: a study based on TCGA and GEO data. Transl Cancer Res 9(7):4393
Article
CAS
Google Scholar
Ma Z, Xu J, Ru L, Zhu W (2021) Identification of pivotal genes associated with the prognosis of gastric carcinoma through integrated analysis. Biosci Rep. https://doi.org/10.1042/BSR20203676
Ma J, Meng Y, Zhou X, Guo L, Fu W (2022) The prognostic significance and gene expression characteristics of gastric signet-ring cell carcinoma: a study based on the seer and TCGA databases. Front Surg. https://doi.org/10.3389/fsurg.2022.819018
Article
Google Scholar
Akhavan H, Ramezani S, Shams Z, Hosseini-Asl S (2021) Revealing novel biomarkers involved in development and progression of gastric cancer by comprehensive bioinformatics analysis. Inform Med Unlocked 25:100630. https://doi.org/10.1016/j.imu.2021.100630
Article
Google Scholar
Wang F, Xue Q, Xu D, Jiang Y, Tang C, Liu X (2020) Identifying the hub gene in gastric cancer by bioinformatics analysis and in vitro experiments. Cell Cycle 19(11):1326–1337. https://doi.org/10.1080/15384101.2020.1749789
Article
CAS
Google Scholar
Teng F, Zhang JX, Chen Y, Shen XD, Su C, Guo YJ, Liu SQ (2021) LncRNA NKX2-1-AS1 promotes tumor progression and angiogenesis via upregulation of SERPINE1 expression and activation of the VEGFR-2 signaling pathway in gastric cancer. Mol Oncol 15(4):1234–1255. https://doi.org/10.1002/1878-0261.12911
Article
CAS
Google Scholar
Zhao Q, Xie J, Xie J, Zhao R, Song C, Wang H, Xie Y (2021) Weighted correlation network analysis identifies FN1, COL1A1 and SERPINE1 associated with the progression and prognosis of gastric cancer. Cancer Biomark 31(1):59–75. https://doi.org/10.3233/CBM-200594
Article
CAS
Google Scholar
Demircan B, Dyer LM, Gerace M, Lobenhofer EK, Robertson KD, Brown KD (2009) Comparative epigenomics of human and mouse mammary tumors. Genes Chromosom Cancer 48(1):83–97. https://doi.org/10.1002/gcc.20620
Article
CAS
Google Scholar