Skip to main content

Analytical solution of thermal effect on unsteady visco-elastic dusty fluid between two parallel plates in the presence of different pressure gradients

Abstract

Background

Thermal diffusion of dusty fluids has valuable interference in various fields, including waste-water treatment, oil transportation, and power plant pipes. Dusty fluids are used in lots of industrial fields as a result of their improved heat transfer and heat management capabilities. These industries range from renewable energy systems to aerobic plastic sheet extrusion, manufacturing, and rolling and reaching metal sheet cooling.

Results

The work embodied in this paper presents the analytical solution performed to predict the effects of thermal diffusion on dusty, viscous, incompressible fluid flows between two porous, parallel vertical plates with a heat source or a heat sink. The mathematical equations are solved by the separation of variables and Laplace transform techniques. The influence of temperature is investigated for various values of Prandtl number and heat source or heat sink parameters. Also, the influences of various coefficients like the thermal diffusion coefficient, Schmidt number, Prandtl number, and heat source or heat sink coefficient on the concentration are observed. The fluid velocity distribution is graphically obtained. The solutions are discussed and exhibited graphically. The influences of the thermal diffusion parameter and chemical reaction parameter on fluid and dust particles’ velocities are examined. A parametric study on the effect of time on temperature and concentration is made.

Conclusions

The exact expressions for temperature, concentration, and velocity variation for fluid and dusty particles are obtained analytically. The temperature is inversely proportional to both the Prandtl number Pr and the heat source or heat sink parameter \(H_s\). The concentration of the fluid is inversely proportional to the thermal diffusion parameter Td and the heat source or heat sink parameter \(H_s\).

1 Background

Thermal diffusion of dusty fluids has always been a point of interest to researchers as well as practitioners owing to its valuable interference in various fields, including wastewater treatment, oil transportation, and power plant pipes. Dusty fluids have paved their way through lots of industrial fields as a result of their improved heat transfer and heat management capabilities; these industries range from renewable energy systems to aerobic plastic sheet extrusion, manufacturing, and rolling metal sheet cooling. Nidhi et al.  [1] have studied the unsteady magnetohydrodynamics (MHD) Walter’s-B viscoelastic dust effect of vibration temperature on fluids passing through inclined porous plates with thermal radiation.

Farhad et al.  [2] investigated the effects of a magnetic field paired with heat transfer on conductive, viscoelastic, incompressible, and dusty fluids moving between two non-conductive inflexible plates. Radhika  [3] and  [4] have studied the effect of heat transfer on dusty liquids with hybrid nanoparticles floating on the molten surface. Bilal et al.  [5] discussed the Couette flow of dusty viscoelastic fluid in a rotating frame with heat transfer. Mallikarjuna et al.  [6] investigated the effect of radiation and thermal diffusion on the MHD heat transfer flow of a dusty, viscous, incompressible conductive fluid between two parallel plates. Govindarajan et al.  [7] studied the combined impacts of mass and heat transmission on a radiant MHD oscillating thin dusty fluid in a fully saturated permeable channel.

The study of chemical reactions and thermal diffusion has many applications, including liquid metal cooling of nuclear processes, sustained plasma confinement for controlled thermonuclear fusion, and electromagnetic metal casting. K. Suneeth et al. [8] have studied the effect of thermal radiation on the flow of MHD viscoelastic fluid through a porous movable plate with a primary chemical reaction. Debasish Dey  [9] made a numerical model to study and analyze the dusty fluid flowing through a vertical surface with heat-generating and endothermic-type chemical reactions. Prasanthi et al.  [10] have investigated the upshots of chemical reactions and radiations on MHD dusty flow over a sloping porous sheet immersed in a porous medium.

Furthermore, it is mentioned that other researchers studied the influence of pressure gradients on dusty fluid flow. Kanaka Lata Ojha et al. [11] have studied the influence of sinusoidal gradients of pressure upon two-dimensional unsteady viscoelastic hydromagnetic currents through channels lined by porous materials. Dash et al.  [12] have studied the effect of a sinusoidal pressure gradient on viscoelastic hydromagnetic flow between two porous parallel plates. MHD’s dusty fluid flow has witnessed heavy research and has grabbed researchers’ attention for quite some time. Jadav Konch  [13] has developed computer codes to study outcomes at the unsteady glide of a viscous dusty fluid beyond an exponentially increased vertical plate with viscous dissipation within the existence of a warmth supply and magnetic field. Bilal  [14] has numerically discussed the influence of Hall currents on the unsteady rotating current of carbon nanotubes in a permeable Darcy–Forchheimer media with dust grains and nonlinear heat radiation. Dawar  [15] has investigated the Hall effect in dual-phase radiative dusty nanofluid flow across a stretched sheet. Neetu Singh et al.  [16]] have investigated the effect of inertia on dusty fluid in a permeable medium. Chitra et al.  [17] have studied the flow of an unsteady dusty fluid across an impermeable media in a circular pipe under the influence of a magnetic field and a time-varying pressure gradient with slip conditions. Sudhir Kumar  [18] has studied, using linearized theory, the influences of dust particles, rotation, couple stress, and magnetization on a thin film of couple stress magnetized fluid’s thermal stability. Sasikala  [19] focused on adding dust particles between two parallel plates passing through a permeable media in the existence of a magnetic field. He observed that the upper plate has a uniform suction force, while the bottom plate has a constant injection. Farhad Ali et al.  [20] have discussed the fluctuating natural convection of heat-absorbing viscoelastic dust liquid in horizontal channels with the MHD infusion.

Analytical methods are often the preferred approach for solving partial differential equations (PDEs)  [21] when it is possible to do so. This is because analytical solutions are often more accurate than numerical solutions, and they can be more easily generalized to other problems  [4, 22]. Some of the most common analytical methods for solving PDEs include separation of variables  [23], Fourier transforms  [24], Laplace transforms, and Green’s functions. Marwan Al-Raeei  [24] derived the bulk modulus relationship for the Morse interaction, by using the Fourier transformation and the mean-spherical approximation.

The purpose of this investigation is to derive an analytical solution by using the separation of variables method to discuss the effect of heat on the unsteady, dusty visco-elastic fluid in the presence of different pressure gradients. The problem is formulated and analytically solved, and the relevant results are discussed in depth graphically to explore the influence of various fluid parameters.

2 Method

2.1 Governing equations

The problem considered is a flow of an incompressible viscous dusty fluid between two infinite plates separated by a distance 2h without body force as illustrated in Fig.  1 based on the aforementioned assumptions

Fig. 1
figure 1

Geometry of the flow

  • The flow is unsteady, laminar, and subjected to pressure gradient varying over time the plate movement

  • The flow passes through two parallel plates that are vertically heated and have a heat source or sink.

  • In the beginning, the fluid and dust particle clouds will both be expected to be stationary.

  • The dust particles are considered to be homogeneous in size with a spherical shape.

  • The dust particle number density is assumed to be uniform.

  • The flow in a porous medium.

The governing equations  [25] are:

$$\begin{aligned} \frac{\partial u}{\partial t}= & {} -\frac{1}{\rho } \frac{\partial P}{\partial x}+g \beta \left( T-T_0\right) +g \beta \left( C-C_0\right) +\gamma \left( 1-\lambda \frac{\partial }{\partial t}\right) \frac{\partial ^2 u}{\partial y^2}+\frac{k N}{\gamma }(v-u)-\frac{\gamma }{k} u \end{aligned}$$
(1)
$$\begin{aligned} \frac{\partial v}{\partial t}= & {} \frac{k}{m}(u-v) \end{aligned}$$
(2)
$$\begin{aligned} \frac{\partial T}{\partial t}= & {} \frac{K_T}{\rho C_p} \frac{\partial ^2 T}{\partial y^2}-\frac{Q_1}{\rho C_p}\left( T-T_0\right) \end{aligned}$$
(3)
$$\begin{aligned} \frac{\partial C}{\partial t}= & {} D \frac{\partial ^2 C}{\partial y^2}-\alpha \left( C-C_0\right) +D_T \frac{\partial ^2 T}{\partial y^2} \end{aligned}$$
(4)

The initial and boundary condition are

$$\begin{aligned}&t=0, u=v=0, T=T_0,\textrm{C}=\textrm{C}_{\textrm{o}}, \quad -\textrm{h}<y<\textrm{h} \\&t>0, u=v=0,=T \textrm{o}+\left( T_{\textrm{w}}-T_{\textrm{o}}\right) \left( 1-e^{-a t}\right) , and \\&C=\textrm{Co}+(\textrm{Cw}-\textrm{Co})\left( 1-e^{-a t}\right) , \quad y=\pm h \end{aligned}$$
(5)

where u—fluid velocity (m/s), t—time (s), \(\rho\)—fluid density \((\mathrm{kg/m}^3)\), P—pressure of the fluid \((\mathrm{N/m}^2)\), x-axis of co-ordinates oriented along the flow direction. (m), g—gravity acceleration \((\mathrm{m/s}^2)\), \(\beta\)—coefficient of volumetric thermal expansion \((1/^{\circ } C)\), T—fluid temperature \((^{\circ } C)\), \(T_{o}\)—initial temperature \((^{\circ } C)\), C fluid concentration \((\mathrm{kg/m}^3)\), \(C_0\)—initial uniform concentration at \(T_0\), \(\gamma\)—kinematic viscosity \((\mathrm{N s/m}^2)\), \(\lambda\)—the diffusing particles’ mean free path, y—normal to the plate coordinate axis (m), k—non-dimensional chemical reaction coefficient, N—the particle density number of the dust, v—dust particles velocity (m/s), m—mass of the dust particles (kg), \(K_{\textrm{T}}-\) the fluid’s thermal conductivity coefficient (W m\(^{-1}\) K\(^{-1})\) \(C_{\textrm{P}-}\) specific heat at constant pressure (J/kg K), \(Q_1\)—volumetric heat generation or absorption rate (W/m\(^2)\), D—rate of mass diffusion (m\(^2\)/s), \(\alpha\)—chemical reaction coefficient, \(D_{\textrm{T}}\)—thermal diffusion coefficient (m\(^2\)/s). \(C_w\)—concentration at the wall, and \(T_w\)—temperature at the wall

Considering the following dimensionless quantities

$$\begin{aligned} P^*=\frac{P}{\gamma \rho }, \quad y^*=\frac{y}{h}, x^*=\frac{x}{h} \\ u^*=\frac{u}{h}, \quad v^*=\frac{v}{h}, t^*=\frac{\gamma t}{h^2} \\ a^*=\frac{a h^2}{\gamma }, \quad T^*=\frac{T_0-T}{T_0-T_w}, C^*=\frac{C_0-C}{C_0-C_w} \end{aligned}$$
(6)

The governing equations are reduced to

$$\begin{aligned}{} & {} \frac{\partial u}{\partial t}=-\frac{\partial P}{\partial x}+G_r T+G_m C+\gamma \left( 1-V_e \frac{\partial }{\partial t}\right) \frac{\partial ^2 u}{\partial y^2}+\frac{1}{\tau }(v-u)-\frac{u}{M} \end{aligned}$$
(7)
$$\begin{aligned}{} & {} \quad \frac{\partial v}{\partial t}=\frac{1}{r}(u-v) \end{aligned}$$
(8)
$$\begin{aligned}{} & {} \quad \frac{\partial ^2 T}{\partial y^2}-P_r \frac{\partial T}{\partial t}-H_s T=0 \end{aligned}$$
(9)
$$\begin{aligned}{} & {} \quad \frac{\partial ^2 C}{\partial y^2}-S_c \frac{\partial C}{\partial t}-C_r S_c C+T_d \frac{\partial ^2 T}{\partial y^2}=0 \end{aligned}$$
(10)

The initial and boundary conditions are given by

$$\begin{aligned} &t=0, u=v=T=C=0,-\textrm{1}<y<\textrm{1} \\&t>0, u=v=0, T=\left( 1-e^{-a t}\right) \text{ and } C=\left( 1-e^{-a t}\right) , y=\pm 1 \end{aligned}$$
(11)

where Grashof number \((1/^{\circ }\)K) \(\quad G_r=g \beta h \frac{T_w-T_0}{\gamma }\), modified Grashof number \((1/^{\circ }\)K) \(\quad G_m=g \beta h \frac{C_w-C_0}{\gamma }\), visco-elastic parameter \(\quad V_e=\frac{\gamma \lambda }{h^2}\), mass concentration of dust particle g/m\(^3\) \(\quad l=\frac{\gamma m}{k h^2}\), Prandtl number \(\quad P_r=\mu \frac{C_P}{K_T}\), source or sink parameter for heat \(\quad H_s=\frac{Q_1}{K_T} h^2\), Schmidt number \(\quad S_c=\frac{\gamma }{D}\), dimensionless parameter of a chemical reaction \(\quad C_r=\frac{\alpha h^2}{\gamma }\), parameter of thermal diffusion \(\quad T_d=\frac{D_T}{D}\left( \frac{T_W-T_0}{C_W-C_0}\right)\), the fluid viscosity \(\mu =\gamma \rho\), and chemical reaction parameter \(\quad M=\frac{K}{h^2}\)

2.2 Analytical solution

Starting with the homogenous differential equation for temperature

$$\begin{aligned} \frac{\partial ^2 T(y, t)}{\partial y^2}-P_r \frac{\partial T(y, t)}{\partial t}-H_s T(y, t)=0 \end{aligned}$$
(12)

it is subjected to non-homogenous boundary conditions

$$\begin{aligned} &t=0, T=0, y \epsilon (-1,1) \\&t>0, T=\left( 1-e^{-a t}\right) , y=\pm 1 \end{aligned}$$
(13)

To solve this differential equation by using the method of separation of variables, which is one of the most popular methods for solving partial differential equations, and assuming that the solution is separable, that is, the final solution can be formulated as a product of different functions, each of which is only dependent on a single independent variable  [23]. We first transform the non-homogenous boundary conditions into homogeneous ones by assuming that

$$\begin{aligned} T(y, t)=\left( 1-e^{-a t}\right) \frac{\cosh \left( m_1 y\right) }{\cosh \left( m_1\right) }+T^*(y, t) \end{aligned}$$
(14)

Substituting Eq. 14 in Eq. 12 we get

$$\begin{aligned} \begin{array}{rcc} \frac{\partial ^2 T^*(y, t)}{\partial y^2}-P_r \frac{\partial T^*(y, t)}{\partial t}-H_s &{} T^*(y, t)=F(y, t) \\ \text{ at } t=0 &{} T^*=0 &{} y \in (-1,1) \\ \text{ at } t>0 &{} T^*=0 &{} y=\pm 1 \end{array} \end{aligned}$$
(15)

where

$$\begin{aligned} F(y, t)=\left( \mathrm {\gamma }_3+\mathrm {\gamma }_2 e^{-a t}\right) \frac{\cosh \left( m_1 y\right) }{\cosh \left( m_1\right) }, \mathrm {\gamma }_3=\left( H_s-m_1^2\right) , \mathrm {\gamma }_2=\left( P_r a-\mathrm {\gamma }_3\right) \end{aligned}$$
(16)

Equation 15 is a homogenous partial differential equation with homogenous boundary conditions that will be analyzed via the method of separation of variables. We can firstly solve the homogenous one

$$\begin{aligned} \frac{\partial ^2 T^*(y, t)}{\partial y^2}-P_r \frac{\partial T^*(y, t)}{\partial t}-H_s T^*(y, t)=0 \end{aligned}$$
(17)

assume

$$\begin{aligned} T^*(y, t)=T^*(t) T^*(y) \end{aligned}$$
(18)

by substituting Eq. 18 in Eq. 17 we get

$$\begin{aligned}{} & {} T^*(t) T^{* \prime \prime }(y)-P_r T^{*^{\prime }}(t) T^*(y)-H_s T^*(t) \quad T^*(y)=0 \end{aligned}$$
(19)
$$\begin{aligned}{} & {} \quad \therefore \frac{T^{* \prime \prime }(y)}{T^*(y)}-P_r \frac{T^{* \prime }(t)}{T^*(t)}-H_s=0 \end{aligned}$$
(20)
$$\begin{aligned}{} & {} \quad \therefore \frac{T^{* \prime \prime }(y)}{T^*(y)}=P_r \frac{T^{* \prime }(t)}{T^*(t)}+H_s=-\lambda ^2 \end{aligned}$$
(21)
$$\begin{aligned}{} & {} \therefore T^{* \prime \prime }(y)+\lambda ^2 T^*(y)=0 \end{aligned}$$
(22)

and

$$\begin{aligned}{} & {} P_r \frac{T^{* \prime }(t)}{T^*(t)}+H_s=-\lambda ^2 \end{aligned}$$
(23)
$$\begin{aligned}{} & {} \quad \therefore P_r T^{* \prime }(y)+\left( H_s+\lambda ^2\right) T^*(t)=0 \end{aligned}$$
(24)

The solution of Eq. 22 is

$$\begin{aligned}{} & {} T^*(y)=l_1 \cos (\lambda y)+l_2 \sin (\lambda y) \nonumber \\{} & &\text{ at } y=1 \quad T^*=0 \rightarrow 0=l_1 \cos \lambda +l_2 \sin \lambda \\&\text{ at } y=-1 \quad T^*=0 \rightarrow 0=l_1 \cos \lambda -l_2 \sin \lambda \\&\text{ Then } \text{ by } \text{ addition, } \text{ we } \text{ get } \\&2 l_1 \cos \lambda =0 \\&l_1 \ne 0\quad \therefore \cos \lambda =0\rightarrow \quad \lambda =\frac{2 n-1}{2} \pi , \quad n=1,2,3, \ldots \\&0=l_1 \cos \lambda -l_2 \sin \lambda \\&0=C \cos \left( \frac{2 n-1}{2} \pi \right) +l_2 \sin \left( \frac{2 n-1}{2} \pi \right) \\&\therefore l_2=0 \end{aligned}$$
(25)
$$\begin{aligned}{} & {} \quad \therefore T^*(y)=l_1 \cos \left( \frac{2 n-1}{2} \pi \right) y \end{aligned}$$
(26)

This function is the eigen function for solving the non-homogeneous partial differential equation

$$\begin{aligned}{} & {} T^*(y, t)=\sum _{n=1}^{\infty } T_n^*(t) \cdot \cos \left( \frac{2 n-1}{2} \pi \right) y \end{aligned}$$
(27)
$$\begin{aligned}{} & {} \quad \frac{\partial ^2 T^*(y, t)}{\partial y^2}-P_r \frac{\partial T^*(y, t)}{\partial t}-H_s T^*(y, t)=F(y, t) \end{aligned}$$
(28)
$$\begin{aligned}{} & {} \quad F(y, t)=\sum _{n=1}^{\infty } F_n(t) \cdot \cos \left( \frac{2 n-1}{2} \pi \right) y \end{aligned}$$
(29)
$$\begin{gathered} \frac{{\partial ^{2} T^{*} (y,t)}}{{\partial y^{2} }} - P_{r} \frac{{\partial T^{*} (y,t)}}{{\partial t}} - H_{s} T^{*} (y,t) = \sum\limits_{{n = 1}}^{\infty } {F_{n} } (t) \cdot \cos \left( {\frac{{2n - 1}}{2}\pi } \right)y \hfill \\ T^{*} = 0\quad {\text{ at }}\quad t = 0 \hfill \\ T^{*} = 0\quad {\text{ at }}\quad y = \pm 1 \hfill \\ \end{gathered}$$
(30)

Then the solution is

$$\begin{aligned} T^*(y, t)=\sum _{n=1}^{\infty } T_n^*(t) \cdot \cos \left( \frac{2 n-1}{2} \pi \right) y \end{aligned}$$
(31)

Substitute Eq. 31 in Eq. 30 we can get

$$\begin{aligned} &\sum _{n=1}^{\infty }-\left( \frac{2 n-1}{2} \pi \right) ^2 T_n^*(t) \cos \left( \frac{2 n-1}{2} \pi \right) -\sum _{n=1}^{\infty } P_r \frac{d T_n^*(t)}{d t} \cos \left( \frac{2 n-1}{2} \pi \right) y \\&-H_s \sum _{n=1}^{\infty } T_n^*(t) \cos \left( \frac{2 n-1}{2} \pi \right) y=\sum _{n=1}^{\infty } F_n(t) \cdot \cos \left( \frac{2 n-1}{2} \pi \right) y \end{aligned}$$
(32)

where

$$\begin{aligned} F(y, t)=\sum _{n=1}^{\infty } F_n(t) \cos \left( \frac{2 n-1}{2} \pi \right) y \end{aligned}$$
(33)

By orthogonality

$$\int_{{ - 1}}^{1} F (y,t)\cos \left( {\frac{{2m - 1}}{2}\pi } \right)ydy = \sum\limits_{{n = 1}} {\int_{{ - 1}}^{1} {F_{n} (t)\left\{ {\cos \left( {\frac{{2n - 1}}{2}\pi } \right)y} \right\}\left\{ {\cos \left( {\frac{{2m - 1}}{2}\pi } \right)y} \right\}dy} }$$
(34)

For

$$\begin{aligned} m=n \quad \int _{-1}^1 \cos \left( \frac{2 n-1}{2} \pi \right) y \cos \left( \frac{2 m-1}{2} \pi \right) y d y=1 \\ m \ne n \quad \int _{-1}^1 \cos \left( \frac{2 n-1}{2} \pi \right) y \cos \left( \frac{2 n-1}{2} \pi \right) y d y=0 \\ \therefore F_n(t)=\int _{-1}^1 F(y, t) \cos \left( \frac{2 n-1}{2} \pi \right) y d y \\ F_n(t)=\int _{-1}^1\left[ \left( \textrm{X}_3+\gamma _2 e^{-a t}\right) \frac{\cosh m_1 y}{\cosh m_1}\right] \cos \left( \frac{2 n-1}{2} \pi \right) y d y \\ =\frac{2\left[ \gamma _3+\gamma _2 e^{-a t}\right] }{\cosh m_1} \int _0^1 \cosh \left( m_1 y\right) \cos \left( \frac{2 n-1}{2} \pi \right) y d y \end{aligned}$$
(35)
$$\begin{aligned}{} & {} F_n(t)=\gamma _1 \gamma _3+\gamma _2 \gamma _1 e^{-a t} \nonumber \\{} & {} Where\quad \gamma _1=\frac{(-1)^{n-1}(2 n-1) \pi }{m_1^2+\left( \frac{2 n-1}{2} \pi \right) ^2} \end{aligned}$$
(36)

From Eq. 34

$$\begin{aligned} \sum _{n=1}^{\infty }\left[ P_r \frac{d}{d t} T_n^*(t)+\left( H_s+\left( \frac{2 n-1}{2} \pi \right) ^2\right) T_n^*(t)\right] \cos \left( \frac{2 n-1}{2} \pi \right) =-\sum _{n=1}^{\infty } F_n(t) \cos \left( \frac{2 n-1}{2} \pi \right) y \end{aligned}$$
(37)

By orthogonality, we can get

$$\begin{aligned}{} & {} \frac{d T_n^*(t)}{d t}+\frac{\left( H_s+\left( \frac{2 n-1}{2} \pi \right) ^2\right) }{P_r} T_n^*(t)=-\frac{F_n(t)}{P_r} \end{aligned}$$
(38)
$$\begin{aligned}{} & {} \quad \frac{d T_n^*(t)}{d t}+\propto T_n^*(t)=\frac{-F_n(t)}{P_r} \end{aligned}$$
(39)

where \(\propto =\frac{H_s+\left( \frac{2 n-1}{2} \pi \right) ^2}{P_r}\), Then

$$\begin{aligned} T_n^*(t)=e^{-\propto t} \int \frac{-F_n(t)}{P_r} e^{\alpha t} d t+l_1 e^{-\propto t} \end{aligned}$$
(40)

at \(t=0 \quad T_n^*(t)=0\) then    \(l_1=\frac{\gamma _1}{P_r}\left[ \frac{\gamma _3}{\alpha }+\frac{\gamma _2}{(\propto -a)}\right]\)

$$\begin{aligned}{} & {} T_n(t)=\frac{\gamma _1}{P_r}\left[ -\frac{\gamma _3}{\alpha }\left( 1-e^{-\propto -t}\right) +\frac{\gamma _2}{(\propto -a)}\left( e^{-\propto t}-e^{-a t}\right) \right] \end{aligned}$$
(41)
$$\begin{aligned} \therefore T(t, y)=&\left[ \left( 1-e^{-a t}\right) \frac{\cosh m_1 y}{\cosh m_1}\right] +\sum _{n=1}^{\infty } \frac{\gamma _1}{P_r}[ -\frac{\gamma _3}{\alpha }\left( 1-e^{-\alpha t}\right) \\&\left. +\frac{\gamma _2}{(\propto -a)}\left( e^{-\alpha t}-e^{-a t}\right) \right] \cos \left( \frac{2 n-1}{2} \pi \right) y \end{aligned}$$
(42)

Substituting Eq. 42 in 10 to get

$$\begin{aligned}&\frac{\partial ^2 C(y, t)}{\partial y^2}-S_c \frac{\partial C(y, t)}{\partial t}-C_r S_c C(y, t)=-T_d \frac{\partial ^2 T(y, t)}{\partial y^2} \\&\text{ at } \quad t=0 \quad C=0 \quad \text{ For } y \in (-1,1) \\&\text{ at } \quad t>0 \quad C=\left( 1-e^{-a t}\right) \text{ For } y=\pm 1 \end{aligned}$$
(43)

To solve Eq. 43 by separation of variables method we first transform the non-homogenous boundary conditions to homogenous one. Let \(C(y, t)=\left( 1-e^{-a t}\right) \frac{\cosh \left( m_2 y\right) }{\cosh \left( m_1\right) }+C^*(y, t)\) For \(t=0\quad C=0 \quad \therefore C^*=0,t>0 \quad C=\left( 1-e^{-a t}\right) \text{ at } y=\pm 1 \therefore C^*=0\)

$$\begin{aligned}{} & {} \therefore \frac{\partial ^2 C^*(y, t)}{\partial y^2}-S_c \frac{\partial C^*(y, t)}{\partial t}-C_r S_c C^*(y, t)=F_c(y, t) \end{aligned}$$
(44)
$$\begin{aligned} F_c(y, t)=\left( \gamma _4+\gamma _5 e^{-a t}\right) \frac{\cosh \left( m_2 y\right) }{\cosh \left( m_2\right) }-T_d\left( m_1\right) ^2\left( 1-e^{-a t}\right) \frac{\cosh \left( m_1 y\right) }{\cosh \left( m_1\right) } \\ +T_d \sum _{n=1}^{\infty }\left( \frac{2 n-1}{2} \pi \right) ^2 T_n(t) \cdot \cos \left( \frac{2 n-1}{2} \pi \right) y \end{aligned}$$
(45)

which can be written as

$$ \begin{gathered} F_{c} (y,t) = \sum\limits_{{n = 1}}^{\infty } {F_{{nc}} } (t) \cdot \cos \left( {\frac{{2{\text{n}} - 1}}{2}\pi } \right){\text{y}} \hfill \\ {\text{By}}\;{\text{orthogonality}} \hfill \\ \therefore F_{{nc}} (t) = \int_{{ - 1}}^{1} F (y,t)\cos \left( {\frac{{2n - 1}}{2}\pi } \right)ydy \hfill \\ F_{{nc}} (t) = \left( {\gamma _{4} + \gamma _{5} e^{{ - at}} } \right)\gamma _{6} - \gamma _{7} \gamma _{8} \left( {1 - e^{{ - at}} } \right) + \gamma _{9} T_{{nT}} (t) \hfill \\ \gamma _{4} = \left( {C_{r} S_{c} - m_{2}^{2} } \right),\quad \gamma _{5} = \left[ {m_{2}^{2} + S_{c} a^{2} - C_{r} S_{c} } \right] \hfill \\ \gamma _{6} = \frac{{( - 1)^{{n - 1}} (2n - 1)\pi }}{{m_{2}^{2} + \left( {\frac{{2n - 1}}{2}\pi } \right)^{2} }}\quad ,\gamma _{7} = \gamma _{1} = \frac{{( - 1)^{{n - 1}} (2n - 1)\pi }}{{m_{1}^{2} + \left( {\frac{{2n - 1}}{2}\pi } \right)^{2} }} \hfill \\ \gamma _{8} = \left( { - T_{d} m_{1}^{2} } \right),\gamma _{9} = \left[ {\left( {\frac{{2n - 1}}{2}\pi } \right)^{2} T_{d} } \right] \hfill \\ \therefore \frac{{\partial ^{2} C^{*} (y,t)}}{{\partial y^{2} }} - S_{c} \frac{{\partial C^{*} (y,t)}}{{\partial t}} - C_{r} S_{c} \hfill \\ C^{*} (y,t) = \sum\limits_{{n = 1}}^{\infty } {F_{{nc}} } (t) \cdot \cos \left( {\frac{{2n - 1}}{2}\pi } \right)y \hfill \\ \end{gathered} $$
(46)
$$\begin{aligned}{} & {} \quad C^*(y, t)=\sum _{n=1}^{\infty } T_{n c}(t) \cdot \cos \left( \frac{2 n-1}{2} \pi \right) y \end{aligned}$$
(47)

By orthogonality, we can get

$$\begin{aligned}{} & {} \frac{d T_{nc}(t)}{dt}+\frac{\left( C_r S_c+\left( \frac{2 n-1}{2} \pi \right) ^2\right) }{S_c} T_{nc}(t)=-\frac{F_{n c}(t)}{S_c} \end{aligned}$$
(48)
$$\begin{aligned}{} & {} \quad T_{n c}(t)=\frac{-1}{S_c} \frac{\beta _4}{\alpha _1}\left( 1-e^{-\alpha _1 t}\right) -\frac{1}{S_c} \frac{\beta _5}{\left( \alpha _1-a\right) }\left( e^{-a t}-e^{-\alpha _1 t}\right) -\frac{\beta _6}{S_c\left( \alpha _1-\alpha \right) }\left( e^{-\alpha t}-e^{-\alpha _1 t}\right) \end{aligned}$$
(49)

where \(\beta _1=\left[ \frac{\gamma _1}{P_r}\right] , \quad \beta _2=\left[ \frac{\gamma _3}{\alpha }\right] , \quad \beta _3=\left[ \frac{\gamma _2}{\alpha -a}\right] ,\beta _4=\gamma _4 \gamma _6-\gamma _7 \gamma _8+\beta _1 \beta _2 \gamma _9, \beta _5=\gamma _5 \gamma _6+\gamma _7 \gamma _8-\beta _1 \beta _3 \beta _9,\beta _6=\beta _1 \beta _3 \gamma _9-\beta _1 \beta _2 \gamma _9,\alpha _1=\frac{C_r S_c+\left( \frac{2 n-1}{2} \pi \right) ^2}{S_c}\)

$$\begin{aligned} \therefore C(y, t)=\left[ \left( 1-e^{-a t}\right) \frac{\cosh m_2 y}{\cosh m_2}\right] +\sum _{n=1}^{\infty } T_{n c}(t) \cdot \cos \left( \frac{2 n-1}{2} \pi \right) y \end{aligned}$$
(50)

Solve Eq. 8 for u in to get

$$\begin{aligned} u=\tau \frac{\partial v}{\partial t}+v \end{aligned}$$
(51)

Substitute Eq. 51 into Eq. 8 to get

$$\begin{aligned}&\tau \frac{\partial ^2 v}{\partial t^2}+\frac{\partial v}{\partial t}=\frac{d p}{d x}+G_r T+G_m C\\&+\left( 1-V_e \frac{\partial }{\partial t}\right) \left( \tau \frac{\partial ^3 v}{\partial t \partial y^2}+\frac{\partial ^2 v}{\partial y^2}\right) -L \frac{\partial v}{\partial t}-\frac{1}{M}\left( \tau \frac{\partial v}{\partial t}+v\right) \end{aligned}$$
(52)
$$\begin{aligned}&\tau V_e \frac{\partial ^4 v}{\partial t^2 \partial y^2}+V_e \frac{\partial ^3 v}{\partial t \partial y^2}-\tau \frac{\partial ^3 v}{\partial t \partial y^2}-\frac{\partial ^2 v}{\partial y^2}+\left( 1+\frac{\tau }{M}+L\right) \frac{\partial v}{\partial t}+\frac{v}{M}+\tau \frac{\partial ^2 v}{\partial t^2}\\&=G_r T+G_m T-\frac{d p}{d x} \end{aligned}$$
(53)

by substituting \(v(y, t)=\sum _{n=1}^{\infty } T_{n v}(t) \cos \left( \frac{2 n-1}{2} \pi \right) y\)

$$\begin{aligned} \sum _{n=1}^{\infty }\left\{ a_2 T_{n v}^{\prime \prime }(t)+b_2 T_{n v}^{\prime }(t)+l_2 T_{n v}(t)\right\}&\cdot \cos \left( \frac{2 n-1}{2} \pi \right) y\\&=\left( 1-e^{-a t}\right) \left( G_r \frac{\cosh m_1 y}{\cosh m_1}+G_m \frac{\cosh m_2 y}{\cosh m_2}\right) \\&+\sum _{n=1}^{\infty }\left( G_r T_{n T}(t)+G_m T_{n c}(t)\right) \cos \left( \frac{2 n-1}{2} \pi \right) y-\frac{d P}{d x} \nonumber \\ Where\quad{} & {} &a_2=\tau \left( 1-V_e\left( \frac{2 n-1}{2} \pi \right) ^2\right) , \frac{d P}{d x}=P(t), b_2=\left( 1+L+\frac{\tau }{M}\right) +\left( \tau -V_e\right) \cdot \left( \frac{2 n-1}{2} \pi \right) ^2 \\&l_2=\frac{1}{M}+\left( \frac{2 n-1}{2} \pi \right) ^2,T_{n T}(t)=\beta _1 \beta _2+\left( \beta _1 \beta _3-\beta _1 \beta _2\right) e^{-\propto t}-\beta _1 \beta _3 e^{-a t} \\&T_{nc}(t)=-\frac{\beta _4}{\propto S_c}-\frac{\beta _6}{\left( \alpha _1-\propto \right) S_c} e^{-\propto t}-\frac{\beta _5}{\left( \alpha _1-\propto \right) S_c} e^{-a t}+\left( \frac{\beta _5}{S_c\left( \alpha _1-a\right) }+\frac{\beta _6}{S_c\left( \alpha _1-\propto \right) }\right) e^{-\alpha _1 t} \end{aligned}$$
(54)

From Eq. 54 by using orthogonality

$$ \begin{aligned} & \int_{{ - 1}}^{1} {\cos } \left( {\frac{{2n - 1}}{2}\pi } \right)y\cos \left( {\frac{{2m - 1}}{2}\pi } \right)ydy = \left\{ {\begin{array}{*{20}l} 0 \hfill & {m \ne n} \hfill \\ 1 \hfill & {m = n} \hfill \\ \end{array} } \right. \\ & \int_{{ - 1}}^{1} {\cos } \left( {\frac{{2m - 1}}{2}\pi } \right)y\frac{{\cosh m_{1} y}}{{\cosh m_{1} }}dy = \frac{{( - 1)^{n} (2n - 1)\pi }}{{m_{1}^{2} + \left( {\frac{{2n - 1}}{2}\pi } \right)^{2} }} = \gamma _{7} \\ & \int_{{ - 1}}^{1} {\cos } \left( {\frac{{2m - 1}}{2}\pi } \right)y\frac{{\cosh m_{2} y}}{{\cosh m_{2} }}ydy = \frac{{( - 1)^{n} (2n - 1)\pi }}{{m_{2}^{2} + \left( {\frac{{2n - 1}}{2}\pi } \right)^{2} }} = \gamma _{8} \\ & \int_{{ - 1}}^{1} P (t)\cos \left( {\frac{{2m - 1}}{2}\pi } \right)ydy = 2P(t)\frac{{( - 1)^{{n - 1}} }}{{\left( {\frac{{2n - 1}}{2}\pi } \right)}} = P(t).\gamma _{{15}} ,\quad \gamma _{{15}} = \frac{{2( - 1)^{{n - 1}} }}{{\left( {\frac{{2n - 1}}{2}\pi } \right)}} \\ & a_{2} T_{{nv}}^{{\prime \prime }} (t) + b_{2} T_{{nv}}^{\prime } (t) + l_{2} T_{{nv}} (t) = \gamma _{{11}} + \gamma _{{12}} e^{{ - at}} + \gamma _{{13}} e^{{ - \alpha t}} + \gamma _{{14}} e^{{ - \alpha _{1} t}} - P(t)\gamma _{{15}} \\ & {\text{Where}} \\ & \gamma _{{11}} = \left[ {\left( {\gamma _{7} + \beta _{1} \beta _{2} } \right)G_{r} + \left( {\gamma _{8} - \frac{{\beta _{4} }}{{\alpha S_{c} }}} \right)G_{m} } \right] \\ & \gamma _{{12}} - \left[ {\left( {\gamma _{7} - \beta _{1} \beta _{3} } \right)G_{r} + G_{m} \left( {\gamma _{8} - \frac{{\beta _{5} }}{{\left( {\alpha _{1} - a} \right)S_{c} }}} \right)} \right]e^{{ - at}} \\ & \gamma _{{13}} = \left[ {G_{r} \left( {\beta _{1} \beta _{3} - \beta _{1} \beta _{2} } \right) - G_{m} \left( {\frac{{\beta _{6} }}{{\left( {\alpha _{1} - \alpha } \right)S_{c} }}} \right)} \right]e^{{ - \alpha t}} \\ & \gamma _{{14}} = \left[ {\frac{{\beta _{5} }}{{S_{c} \left( {\alpha _{1} - \alpha } \right)}} + \frac{{\beta _{6} }}{{S_{c} \left( {\alpha _{1} - \alpha } \right)}}} \right]G_{m} e^{{ - \alpha _{1} t}} \\ \end{aligned} $$
(55)

Consider the homogenous one

$$\begin{aligned} \textrm{a}_2 \mathrm {~T}_{\textrm{nv}}^{\prime \prime }(\textrm{t})+\textrm{b}_2 \mathrm {~T}_{\textrm{nv}}^{\prime }(\textrm{t})+\textrm{C}_2 \mathrm {~T}_{\textrm{nv}}(\textrm{t})=0 \end{aligned}$$
(56)

The auxiliary equation and its roots are

$$\begin{aligned}{} & {} a_2 m^2+b_2 m+l_2=0, \quad m_1=\frac{-b_2+\sqrt{b_2^2-4 a_2 l_2}}{2 a_2},\quad m_2=\frac{-b_2-\sqrt{b_2^2-4 a_2 l_2}}{2 a_2} \end{aligned}$$
(57)
$$\begin{aligned}{} & {} \therefore T_{nv_h}(t)=l_1 e^{m_1 t}+l_2 e^{m_2 t} \end{aligned}$$
(58)

For non-homogenous one, the particular solution is

$$\begin{aligned} T_{nv_p}(t)=\frac{1}{a_2 D^2+b_2 D+l_2}\left[ \gamma _{11}+\gamma _{12} e^{-a t}+\gamma _{13} e^{-\alpha t}+\gamma _{14} e^{-\alpha _1 t}-\gamma _{15} P(t)\right] \end{aligned}$$
(59)

Case 1: \(P(t)=a_0 e^{-a_1 t}\) \(a_0,a_1\) are constants. The exponential pressure variation arises because of the no-slip boundary condition, which states that the fluid sticks to the plates and has zero velocity at the plates’ surface. As a result, fluid particles near the plates experience a higher drag force than those far away from the plates. This difference in drag force creates a pressure gradient that drives the fluid flow. The particular solution is

$$\begin{aligned} T_{n v}(t)=\gamma _{16}+\gamma _{17} e^{-a t}+\gamma _{18} e^{-\propto t}+\gamma _{19} e^{-\alpha _1 t}-\gamma _{20} e^{-a_1 t} \end{aligned}$$
(60)

The general solution is

$$\begin{aligned} \textrm{T}_{\textrm{nv}}=\textrm{C}_1 \textrm{e}^{\textrm{m}_1 \textrm{t}}+\textrm{C}_2 \textrm{e}^{\textrm{m}_2 \textrm{t}}+\gamma _{16}+\gamma _{17} \textrm{e}^{-\textrm{at}}+\gamma _{18} \textrm{e}^{-\alpha \textrm{t}}+\gamma _{19} e^{-\alpha _1 t}-\gamma _{20} e^{-a_1 t} \end{aligned}$$
(61)

where

$$ \begin{aligned} & \gamma _{{16}} = \frac{{\gamma _{{11}} }}{{l_{2} }},\quad \gamma _{{17}} = \frac{{\gamma _{{12}} }}{{\left( {a_{2} a^{2} - b_{2} a + l_{2} } \right)}},\gamma _{{18}} = \frac{{\gamma _{{13}} }}{{\left( {a_{2} \alpha ^{2} - b_{2} \alpha + l_{2} } \right)}}, \\ & \gamma _{{19}} = \frac{{\gamma _{{14}} }}{{\left( {a_{2} \alpha _{1}^{2} - b_{2} \alpha _{1}^{2} + l_{2} } \right)}},\gamma _{{20}} = \frac{{\gamma _{{15}} a_{0} }}{{\left( {a_{2} a_{1}^{2} - b_{2} a_{1} + l_{2} } \right)}} \\ & \because {\text{ at }}t = 0\quad T_{{nv}} = 0,\therefore 0 = l_{1} + l_{2} + \gamma _{{16}} + \gamma _{{17}} + \gamma _{{18}} + \gamma _{{19}} - \gamma _{{20}} \\ & \because \frac{{aI_{{nv}} }}{{dt}} = 0\therefore 0 = m_{1} l_{1} + m_{2} l_{2} - a\gamma _{{17}} - \propto \gamma _{{18}} - \alpha _{1} \gamma _{{19}} + a_{1} \gamma _{{20}} \\ & \therefore l_{1} = \frac{1}{{\left( {m_{2} - m_{1} } \right)}}\left( { - m_{2} \gamma _{{16}} - \left( {m_{2} + a} \right)\gamma _{{17}} - \left( {m_{2} + \propto } \right)\gamma _{{18}} - \left( {m_{2} + \propto _{1} } \right)\gamma _{{19}} + \left( {m_{2} - a_{1} } \right)\gamma _{{20}} } \right) \\ & \therefore l_{2} = \frac{1}{{\left( {m_{2} - m_{1} } \right)}}\left( {m_{1} \gamma _{{16}} + \left( {m_{1} + a} \right)\gamma _{{17}} + \left( {m_{1} + \propto } \right)\gamma _{{18}} + \left( {m_{1} + \alpha _{1} } \right)\gamma _{{19}} - \left( {m_{1} - a_{1} } \right)\gamma _{{20}} } \right) \\ & v(y.t) = \sum\limits_{{n = 1}}^{\infty } {T_{{nv}} } (t)\cos \left( {\frac{{2n - 1}}{2}\pi } \right)y \\ \end{aligned} $$
(62)
$$\begin{aligned} T_{n u}(t)=\tau \frac{d T_{n v}}{d t}+&T_{n v}=l_1\left( 1+\tau m_1\right) e^{m_1 t}+l_2\left( 1+\tau m_2\right) e^{m_2 t}+\gamma _{16}+(1-\tau a) \gamma _{17} e^{-a t} \\&+(1-\tau \propto ) \gamma _{18} e^{-\propto t}+\left( 1-\tau \propto _1\right) \gamma _{19} e^{-\alpha _1 t}-\left( 1-a_1 \tau \right) \gamma _{20} e^{-a_1 t} \end{aligned}$$
(63)
$$\begin{aligned}{} & {} u(y, t)=\sum _{n=1}^{\infty } T_{n u}(t) \cos \left( \frac{2 n-1}{2} \pi \right) y \end{aligned}$$
(64)

Case 2: \(P(t)=a_3+a_4 t\), \(a_3, a_4\) are constants. This case describes a uniform pressure gradient along the flow direction. The linear pressure variation arises when the fluid flow is in the fully developed region, i.e., when the velocity distribution has evolved completely and is maintained constant along the flow direction. In this case, the pressure drop proportionates to the distance between the plates, and the pressure variation is linear.

$$\begin{aligned}&\frac{1}{\left( a_2 D^2+b_2 D+l_2\right) } \gamma _{15} P(t)=\frac{1}{a_2\left( D-m_1\right) \left( D-m_2\right) } \gamma _{15} P(t) \\&=\frac{1}{a_2\left( m_1-m_2\right) }\left( \frac{1}{D-m_1}-\frac{1}{D-m_2}\right) \gamma _{15} P(t) \\&=\frac{1}{a_2\left( m_1-m_2\right) }\left[ \frac{-1}{m_1}\left( 1-\frac{D}{m_1}\right) ^{-1}+\right. \\&\left. \frac{1}{m_2}\left( 1-D / m_2\right) ^{-1}\right] P(t) \gamma _{15} \end{aligned}$$
(65)
$$\begin{aligned}{} & {} \frac{1}{\left( a_2 D^2+b_2 D+l_2\right) } \gamma _{15} P(t)=\frac{1}{a_2}\left[ \left( \frac{a_3}{m_1 m_2}+\frac{a_4\left( m_1+m_2\right) }{\left( m_1 m_2\right) ^2}\right) +\frac{a_4}{m_1 m_2} t\right] \gamma _{15}=\left[ a_5+a_6 t\right] \gamma _{15} \end{aligned}$$
(66)

where

$$\begin{aligned} a_5=\left[ \frac{a_3}{m_1 m_2 a_2}+\frac{a_4\left( m_1+m_2\right) }{\left( m_1 m_2\right) 2 a_2}\right\rfloor * \frac{1}{a_2}, a_6=\frac{a_4}{m_1 m_2 a_2} * \frac{1}{a_2} \nonumber \\{} & {} T_{n v}(t)=l_1 e^{m_1 t}+l_2 e^{m_2 t}+\gamma _{16}+\gamma _{17} e^{-a t}+\gamma _{18} e^{-\propto t}+\gamma _{19} e^{-\alpha _1 t}+\left( a_5+a_6 t\right) \gamma _{15} \end{aligned}$$
(67)

By applying the boundary conditions \(at\quad t=0 \quad T=0, \quad \frac{d T}{d t}=0, we get\)

$$\begin{aligned}&l_1=\frac{1}{\left( m_2-m_1\right) }\left[ -m_2 \gamma _{16}-\left( m_2+a\right) \gamma _{17}-\left( m_2+\propto \right) \gamma _{18}-\left( m_2+\propto _1\right) \gamma _{19}-a_5 m_2 \gamma _{15}+a_6 \gamma _{15}\right] \\&l_2=\frac{1}{\left( m_2-m_1\right) }\left[ +m_1 \gamma _{16}+\left( m_1+a\right) \gamma _{17}+\left( m_1+\propto \right) \gamma _{18}+\left( m_1+\alpha _1\right) \gamma _{19}+a_5 m_2 \gamma _{15}-a_6 \gamma _{15}\right] \nonumber \\{} & {} T_{n v}(t)=l_1 e^{m_1 t}+l_2 e^{m_2 t}+\gamma _{16}+\gamma _{17} e^{-a t}+\gamma _{18} e^{-\alpha t}+\gamma _{19} e^{-\alpha _1 t}+\left( a_5+a_6 t\right) \gamma _{15} \end{aligned}$$
(68)
$$\begin{aligned}{} & {} v(y, t)=\sum _{n=1}^{\infty } T_{n v}(t) \cos \left( \frac{2 n-1}{2} \pi \right) y \end{aligned}$$
(69)
$$\begin{aligned} T_{n u}(t)=\tau \frac{d T_{n v}}{d t}+&T_{n v}=l_1\left( \tau m_1+1\right) e^{m_1 t} \\&+l_2\left( \tau m_2+1\right) e^{m_2 t}+\gamma _{16}+(1-\tau a) \gamma _{17} e^{-a t}+(1-\tau \propto ) \gamma _{18} e^{-\alpha t}\\ {}&+\left( 1-\tau \propto _1\right) \gamma _{19} e^{-\alpha _1 t} +\left( a_5+a_6 t+\tau a_6\right) \gamma _{15} \end{aligned}$$
(70)
$$\begin{aligned}{} & {} u(y, t)=\sum _{n=1}^{\infty } T_{nu}(t) \cos \left( \frac{2 n-1}{2} \pi \right) y \end{aligned}$$
(71)

3 Results

The analytical solutions for partial differential equations have been carried out, and results are displayed for temperature, concentration, and velocity profiles for two different cases of pressure distribution. The calculation of flow rate for a constant pressure gradient is easier than for an exponential pressure gradient. As opposed to that, the exponential pressure gradient is more realistic than the constant pressure gradient. The exponential pressure gradient can lead to more stable flow conditions than the constant pressure gradient.

Fig. 2
figure 2

Variation of temperature with \(H_s\)

Fig. 3
figure 3

Variation of temperature with \(P_r\)

Fig. 4
figure 4

Variation of concentration with \(S_c\)

Fig. 5
figure 5

Variation of concentration with \(T_d\)

Fig. 6
figure 6

Variation of concentration with \(H_s\)

Fig. 7
figure 7

Variation of concentration with \(P_r\)

Fig. 8
figure 8

Variation of fluid velocity with \(T_d\)-case 1

Fig. 9
figure 9

Variation of dust velocity with \(T_d\)-case 1

Fig. 10
figure 10

Variation of fluid velocity with \(C_r\)-case 1

Fig. 11
figure 11

Variation of dust velocity with \(C_r\)-case 1

Fig. 12
figure 12

Variation of fluid velocity with \(T_d\)-case 2

Fig. 13
figure 13

Variation of dust velocity with \(T_d\)-case 2

Fig. 14
figure 14

Variation of fluid velocity with \(C_r\)-case 2

Fig. 15
figure 15

Variation of dust velocity with \(C_r\)-case 2

Fig. 16
figure 16

Variation of temperature with time

Fig. 17
figure 17

Variation of concentration with time

The physical quantities for engineering applications, local Nusselt number \(Nu=- (\delta T/\delta y)_{y=0}\), and local Sherwood number \(Sh=- (\delta C/\delta y)_{y=0}\) are defined as  [26]. The current results are compared with the previously published available results for different cases, which obtained numerically by Abass et al. [26], in order to investigate the validity of the current results and procedures. The values are shown in Table  1. Nusselt and Sherwood numbers have been compared for various parameters. The current results showed good agreement.

Table 1 Comparison of Nusselt number and local Sherwood number

The analytical results for temperature, concentration, fluid velocity, and dust velocity showed good agreement with Madhura and Kalpana  [25] as shown in Tables 2 and 3

Table 2 Comparisons of temperature and concentration
Table 3 Comparisons of fluid and dust velocities

4 Discussions

Figures 2 and 3 show the influence of Prandtl number \(P_r\) and the heat source or heat sink coefficient \(H_s\) on temperature. It has been noted that the more temperature increase, the more Pr and \(H_s\) decrease. Figures 4 and 5 confirm that the concentration of the fluid increases when the thermal diffusion parameter Td increases and the Schmidt number Sc decreases, respectively. Figure 6 confirms that the concentration of the fluid increases when the heat source or heat sink coefficient \(H_s\) decreases. Figure 7 confirms that the concentration of the fluid increases when the Prandtl number Pr increases. Figures 8, 9, 10, and 11 represent the fluid and dust velocities profiles. These figures confirm that fluid and dust velocities increase as Td increases. Figures 12, 13, 14, and 15 show that the fluid and dust velocities increase when Cr decreases. Figures 16 and 17 represent the influence of time on the temperature and the concentration, respectively. The temperature and concentration increase as time increases. The graphs are based on the following values:

$$\begin{aligned}&c_{\textrm{r}}=0.4, a=0.2, H_{\textrm{s}}=0.2, t=1, P_{\textrm{r}}=0.4, S_{\textrm{c}}=0.6, M=10, l=0.1, D=1, V_{\textrm{e}}=0.3, \tau =0.9, G_{\textrm{m}}=5, G_{\textrm{r}}=10 \\&n=2, a_0=2.5, a_1=0.3, a_3=2.5, a_4=0.2 \text{ and } m_2=1.5 \end{aligned}$$

5 Conclusion

The exact expressions for temperature, concentration, and velocity profiles for fluid and dusty particles are derived analytically. Results are displayed graphically for the various values of parameters. The key discovery may be summed up as follows:

  • The temperature is inversely proportional to both the Prandtl number Pr and the heat source and sink parameter \(H_s\).

  • The concentration of the fluid is inversely proportional to the thermal diffusion parameter Td and the heat source or heat sink parameter \(H_s\).

  • The fluid concentration is proportional to Schmidt’s number Sc and Prandtl’s number Pr

  • Fluid and dust particle velocities increase as Td increases.

  • Fluid and dust particle velocities increase as Cr decreases.

  • If the dust particles are very fine, i.e., the mass of the dust particles is very small, and as \(\tau -> 0\) the velocities of the fluid and dust particles will be the same.

  • The temperature and concentration increase with time.

The proposed analytical method will be used to study more complex problems that include chemical, ion slip, and magnetohydrodynamic effects on dusty fluid flow with mass and heat transfer in a porous media.

Availability of data and materials

Not applicable

Abbreviations

MHD:

Magnetohydrodynamic

PDE:

Partial differential equation

Pr:

Prandtl number

Nu:

Nusselt number

Sh:

Local Sherwood number

References

  1. Pandya N, Quraishi MS (2018) Effect of variable permeability, concentration and viscous dissipation with chemical reaction and oscillating temperature on unsteady mhd walters-b viscoelastic dusty fluid past over inclined porous. Int J Sci Res Math Stat Sci 5(4):33

    Google Scholar 

  2. Ali F, Bilal M, Sheikh NA, Khan I, Nisar KS (2019) Two-phase fluctuating flow of dusty viscoelastic fluid between non-conducting rigid plates with heat transfer. IEEE Access 7:123299–123306. https://doi.org/10.1109/ACCESS.2019.2933529

    Article  Google Scholar 

  3. Radhika M, Punith Gowda RJ, Naveenkumar R, Siddabasappa Prasannakumara BC (2021) Heat transfer in dusty fluid with suspended hybrid nanoparticles over a melting surface. Heat Transfer 50:2150–2167. https://doi.org/10.1002/htj.21972

    Article  Google Scholar 

  4. Patre S, Kurre RK (2022) Thermodynamic and volumetric properties of hydroxamic acids in dimethylsulfoxide. Chem Thermodyn Therm Anal 7:100066

    Article  Google Scholar 

  5. Bilal M, Khan S, Ali F, Arif M, Khan I, Nisar KS (2021) Couette flow of viscoelastic dusty fluid in a rotating frame along with the heat transfer. Sci Rep 11(1):506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reddy B, Kesavaiah DC, Reddy GVR (2018) Effects of radiation and thermal diffusion on mhd heat flow of a dusty viscoelastic fluid between two moving parallel plates. J Eng Appl Sci 13(22):8863–8872

    CAS  Google Scholar 

  7. Govindarajan A, Vijayalakshmi R, Ramamurthy V (2018) Combined effects of heat and mass transfer to magneto hydrodynamics oscillatory dusty fluid flow in a porous channel. J Phys: Conf Ser. https://doi.org/10.1088/1742-6596/1000/1/012003

    Article  Google Scholar 

  8. Suneetha K, Ibrahim SM, Vijaya Kumar P, Jyothsna K (2021) Linear thermal radiation effects on MHD viscoelastic fluid flow through porous moving plate with first order chemical reaction, variable temperatureand concentration. J Comput Appl Res Mech Eng 10(2):496-509. https://doi.org/10.22061/jcarme.2020.2599.1258

    Article  Google Scholar 

  9. Dey D, Chutia B (2022) Modelling and analysis of dusty fluid flow past a vertical surface with exothermic and endothermic kind of chemical reactions. In: Mahanta P, Kalita P, Paul A, Banerjee A (eds) Advances in thermofluids and renewable energy. Springer, Singapore, pp 45–57

    Chapter  Google Scholar 

  10. Prasanthi TBM (2020) Radiation and chemical reaction effects on mhd flow of dusty fluid over inclined porous plate embedded in porous medium. Solid State Technol 63(6):17800–17814

    Google Scholar 

  11. Ojha KL, Swain K, Dash P (2022) Viscoelastic hydromagnetic oscillatory flow in a channel in the presence of sinusoidal pressure gradient and linear motion of the plate. Heat Transf 51(1):1138–1149. https://doi.org/10.1002/htj.22345

    Article  Google Scholar 

  12. Dash GC, Ojha KL (2018) Viscoelastic hydromagnetic flow between two porous parallel plates in the presence of sinusoidal pressure gradient. Alex Eng J 57(4):3463–3471. https://doi.org/10.1016/j.aej.2017.12.011

    Article  Google Scholar 

  13. Jadav K (2018) Soret and dufuor effects on unsteady hydromagnetic dusty fluid flow past an exponentially accelerated plate with variable viscosity and thermal conductivity. Front Heat Mass Transfer 10(29):1–18. https://doi.org/10.5098/hmt.10.29[39]

    Article  Google Scholar 

  14. Bilal M, Ramzan M (2019) Hall current effect on unsteady rotational flow of carbon nanotubes with dust particles and nonlinear thermal radiation in darcy-forchheimer porous media. J Therm Anal Calorim 138:3127–3137

    Article  CAS  Google Scholar 

  15. Dawar A, Shah Z, Kumam P, Alzahrani AK, Khan W, Thounthong P (2019) Impact of volume fraction and hall effect on two-phase radiative dusty nanofluid flow over a stretching sheet. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2937389

    Article  Google Scholar 

  16. Singh N, Kumar S (2019) Hydromagnetic instability of density stratified rotating layer of Rivlin-Ericksen visco-elastic fluid in porous medium. Int J Math Trends Technol 65:200–217

    Article  Google Scholar 

  17. Chitra M, Kavitha V (2017) Influence of slip condition on unsteady pulsatile flow through a porous medium in a circular pipe. Res J Sci Technol 9(3):441

    Article  Google Scholar 

  18. Kumar S, Pundir R, Nadian PK (2020) Effect of dust particles on a rotating couple-stress ferromagnetic fluid heated from below. Int J Sci Eng Appl Sci

  19. Sasikala R, Govindarajan AG, Gayathri R (2018) Unsteady stokes flow of dusty fluid between two parallel plates through porous medium in the presence of magnetic field. J Phys Conf Series 1000

  20. Farhad A, Muhammad B, Madeha G, Ilyas K (2020) A report on fluctuating free convection flow of heat absorbing viscoelastic dusty fluid past in a horizontal channel with mhd effect. Sci Rep. 10(1):8523

    Article  Google Scholar 

  21. Heshmat T, Elshabrawy M (2021) Analytical solution for nonlinear interaction of euler beam resting on a tensionless soil. Proc Int Struct Eng Constr 8(1):02–1026

    Article  Google Scholar 

  22. Keane P, Jacob R, Trout N, Clarke S, Bruno F (2021) Thermal stability of a waste-based alkali-activated material for thermal energy storage. Chem Thermodyn Therm Anal 3–4:100014

    Article  Google Scholar 

  23. Elshabrawy M, Abdeen MA, Beshir S (2021) Analytic and numeric analysis for deformation of non-prismatic beams resting on elastic foundations. Beni-Suef Univ J Basic Appl Sci 10:1–1

    Article  Google Scholar 

  24. Al-Raeei M (2022) Bulk modulus for morse potential interaction with the distribution function based. Chem Thermodyn Therm Anal 6:100046

    Article  Google Scholar 

  25. MadhuraK R, Kalpana G (2013) Thermal effect on unsteady flow of a dusty visco-elastic fluid between two parallel plates under different pressure gradients. Int J Eng Technol 2:88–99

    Article  Google Scholar 

  26. Abbas W, Khaled O, Beshir S, Abdeen M, Elshabrawy M (2023) Analysis of chemical, ion slip, and thermal radiation effects on an unsteady magnetohydrodynamic dusty fluid flow with heat and mass transfer through a porous media between parallel plates. Bull Natl Res Centre 47(49):1

    Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

MA, team leader, initiated the concept of the current paper and derived the governing equations. SA performed the analytical solution. OK performed a parametric study for different cases. ME and WA conducted the discussion of results and reviewed the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Mohamed Elshabrawy.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elshabrawy, M., Khaled, O., Abbas, W. et al. Analytical solution of thermal effect on unsteady visco-elastic dusty fluid between two parallel plates in the presence of different pressure gradients. Beni-Suef Univ J Basic Appl Sci 12, 76 (2023). https://doi.org/10.1186/s43088-023-00410-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s43088-023-00410-8

Keywords