Abdelmageed ME, Shehatou GS, Abdelsalam RA, Suddek GM, Salem HA (2018) Cinnamaldehyde ameliorates STZ-induced rat diabetes through modulation of IRS1/PI3K/AKT2 pathway and AGEs/RAGE interaction. Naunyn-Schmiedeberg’s Archives of Pharmacology. https://doi.org/10.1007/s00210-018-1583-4
Article
Google Scholar
Ahima RS (2016) Metabolic syndrome a comprehensive textbook
Book
Google Scholar
Ahmed MA, Ali NA, Elbast SAA, Mohamed* MA (2018) Rice bran oil ameliorates hepatic insulin resistance in fructose fed-rats. The Egyptian Journal of Hospital Medicine 71:2885–2891
Article
Google Scholar
Anand P, Murali KY, Tandon V, Murthy PS, Chandra R (2010) Insulinotropic effect of cinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenolpyruvate carboxykinase, and GLUT4 translocation in experimental diabetic rats. Chemico-Biological Interactions 186:72–81. https://doi.org/10.1016/j.cbi.2010.03.044
Article
CAS
PubMed
Google Scholar
Ashwini S, Bobby Z, Sridhar M, Cleetus C (2017) Insulin Plant (Costus pictus) extract restores thyroid hormone levels in experimental hypothyroidism. Pharmacognosy Research 9:51. https://doi.org/10.4103/0974-8490.199766
Article
CAS
PubMed
PubMed Central
Google Scholar
Bagul PK, Middela H, Matapally S, Padiya R, Bastia T, Madhusudana K, Reddy BR, Chakravarty S, Banerjee SK (2012) Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructose-fed rats. Pharmacological Research 66:260–268. https://doi.org/10.1016/j.phrs.2012.05.003
Article
CAS
PubMed
Google Scholar
Berger S, Tietz NW (eds) (1976) Fundamentals of clinical chemistry, 2d. Saunders, Philadelphia
Google Scholar
Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 61:882–888
CAS
PubMed
Google Scholar
Caliceti C, Calabria D, Roda A, Cicero A (2017) Fructose intake, serum uric acid, and cardiometabolic disorders: a critical review. Nutrients 9:395. https://doi.org/10.3390/nu9040395
Article
CAS
PubMed Central
Google Scholar
Chen Y-F, Wang Y-W, Huang W-S, Lee M-M, Wood WG, Leung Y-M, Tsai H-Y (2016) Trans-cinnamaldehyde, an essential oil in cinnamon powder, ameliorates cerebral ischemia-induced brain injury via inhibition of neuroinflammation through attenuation of iNOS, COX-2 expression and NFκ-B signaling pathway. NeuroMolecular Medicine 18:322–333. https://doi.org/10.1007/s12017-016-8395-9
Article
CAS
PubMed
Google Scholar
Correia S, Carvalho C, Santos M, Seica R, Oliveira C, Moreira P (2008) Mechanisms of action of metformin in type 2 diabetes and associated complications: an overview. Mini-Reviews in Medicinal Chemistry 8:1343–1354. https://doi.org/10.2174/138955708786369546
Article
CAS
PubMed
Google Scholar
Dichtwald S, Weinbroum AA, Sorkine P, Ekstein MP, Dahan E (2012) Metformin-associated lactic acidosis following acute kidney injury. Efficacious treatment with continuous renal replacement therapy. Diabetic Medicine 29:245–250. https://doi.org/10.1111/j.1464-5491.2011.03474.x
Article
CAS
PubMed
Google Scholar
DiNicolantonio JJ, O’Keefe JH, Lucan SC (2015) Added fructose. Mayo Clinic Proceedings 90:372–381. https://doi.org/10.1016/j.mayocp.2014.12.019
Article
CAS
PubMed
Google Scholar
Eidi A, Mortazavi P, Bazargan M, Zaringhalam J (2012) Hepatoprotective activity of cinnamon ethanolic extract against CCL4-induced liver injury in rats. EXCLI Journal 13
El Messaoudi S, Rongen GA, Riksen NP (2013) Metformin therapy in diabetes: the role of cardioprotection. Current Atherosclerosis Reports 15. https://doi.org/10.1007/s11883-013-0314-z
Eliza J, Daisy P, Ignacimuthu S (2010) Antioxidant activity of costunolide and eremanthin isolated from Costus speciosus (Koen ex. Retz) Sm. Chemico-Biological Interactions 188:467–472. https://doi.org/10.1016/j.cbi.2010.08.002
Article
CAS
PubMed
Google Scholar
Eliza J, Daisy P, Ignacimuthu S, Duraipandiyan V (2009) Normo-glycemic and hypolipidemic effect of costunolide isolated from Costus speciosus (Koen ex. Retz.)Sm. in streptozotocin-induced diabetic rats. Chemico-Biological Interactions 179:329–334. https://doi.org/10.1016/j.cbi.2008.10.017
Article
CAS
PubMed
Google Scholar
Findlay JWA, Dillard RF (2007) Appropriate calibration curve fitting in ligand binding assays. AAPS J 9:E260–E267. https://doi.org/10.1208/aapsj0902029
Article
PubMed
PubMed Central
Google Scholar
Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry 18:499–502
CAS
PubMed
Google Scholar
Gireesh G, Thomas SK, Joseph B, Paulose CS (2009) Antihyperglycemic and insulin secretory activity of Costus pictus leaf extract in streptozotocin induced diabetic rats and in in vitro pancreatic islet culture. Journal of Ethnopharmacology 123:470–474. https://doi.org/10.1016/j.jep.2009.03.026
Article
CAS
PubMed
Google Scholar
Greenfield JR, Campbell LV (2004) Insulin resistance and obesity. Clinics in Dermatology, Obesity 22:289–295. https://doi.org/10.1016/j.clindermatol.2004.01.011
Article
Google Scholar
Guo X, Sun W, Huang L, Wu L, Hou Y, Qin L, Liu T (2017) Effect of cinnamaldehyde on glucose metabolism and vessel function. Medical Science Monitor 23:3844–3853. https://doi.org/10.12659/MSM.906027
Article
PubMed
PubMed Central
Google Scholar
Hasanvand A, Amini-Khoei H, Jahanabadi S, Mehr SE, Dehpour AR (2018) Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through activation of AMPK signaling pathway. Journal of Nephropathology:7
Hininger-Favier I, Benaraba R, Coves S, Anderson RA, Roussel A-M (2009) Green tea extract decreases oxidative stress and improves insulin sensitivity in an animal model of insulin resistance, the fructose-fed rat. Journal of the American College of Nutrition 28:355–361. https://doi.org/10.1080/07315724.2009.10718097
Article
CAS
PubMed
Google Scholar
Huang D-W, Chang W-C, Wu JS-B, Shih R-W, Shen S-C (2016) Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet. Nutrition Research 36:150–160. https://doi.org/10.1016/j.nutres.2015.10.001
Article
CAS
PubMed
Google Scholar
JAFFE M (1886) Ueber den Niederschlag welchen Pikrinsaure in normalen Harn erzeugt und uber eine neue Reaction des Kreatinins. Z Physiol Chem 10:391–400
Google Scholar
Johnson RJ, Sanchez-Lozada LG, Nakagawa T (2010a) The effect of fructose on renal biology and disease. Journal of the American Society of Nephrology 21:2036–2039. https://doi.org/10.1681/ASN.2010050506
Article
CAS
PubMed
Google Scholar
Johnson RJ, Sanchez-Lozada LG, Nakagawa T (2010b) The effect of fructose on renal biology and disease. Journal of the American Society of Nephrology 21:2036–2039. https://doi.org/10.1681/ASN.2010050506
Article
CAS
PubMed
Google Scholar
Kaur J (2014) A comprehensive review on metabolic syndrome. Cardiology Research and Practice 2014:1–21. https://doi.org/10.1155/2014/943162
Article
Google Scholar
Khare P, Jagtap S, Jain Y, Baboota RK, Mangal P, Boparai RK, Bhutani KK, Sharma SS, Premkumar LS, Kondepudi KK, Chopra K, Bishnoi M (2016) Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice. Biofactors 42:201–211. https://doi.org/10.1002/biof.1265
Article
CAS
PubMed
Google Scholar
Khouri H, Collin F, Bonnefont-Rousselot D, Legrand A, Jore D, Gardes-Albert M (2004) Radical-induced oxidation of metformin. European Journal of Biochemistry 271:4745–4752. https://doi.org/10.1111/j.1432-1033.2004.04438.x
Article
CAS
PubMed
Google Scholar
Kretowicz M, Johnson RJ, Ishimoto T, Nakagawa T, Manitius J (2011) The impact of fructose on renal function and blood pressure. International Journal of Nephrology 2011:1–5. https://doi.org/10.4061/2011/315879
Article
CAS
Google Scholar
Lee, Y.-S., Son, E., Kim, S.-H., Lee, Y.M., Kim, O.S., Kim, D.-S., 2017. Synergistic uric acid-lowering effects of the combination of Chrysanthemum indicum linne flower and Cinnamomum cassia (L.) J. Persl Bark Extracts. Evid Based Complement Alternat Med 2017. https://doi.org/10.1155/2017/9764843
CAS
Google Scholar
Liu I-M, Tzeng T-F, Liou S-S, Lan T-W (2007) Myricetin, a naturally occurring flavonol, ameliorates insulin resistance induced by a high-fructose diet in rats. Life Sciences 81:1479–1488. https://doi.org/10.1016/j.lfs.2007.08.045
Article
CAS
PubMed
Google Scholar
Lv W, Wen J, Li L, Sun R, Wang J, Xian Y, Cao C, Wang Y, Gao Y (2012) The effect of metformin on food intake and its potential role in hypothalamic regulation in obese diabetic rats. Brain Research 1444:11–19. https://doi.org/10.1016/j.brainres.2012.01.028
Article
CAS
PubMed
Google Scholar
Ma J, Yu H, Liu J, Chen Y, Wang Q, Xiang L (2015) Metformin attenuates hyperalgesia and allodynia in rats with painful diabetic neuropathy induced by streptozotocin. European Journal of Pharmacology 764:599–606. https://doi.org/10.1016/j.ejphar.2015.06.010
Article
CAS
PubMed
Google Scholar
Madiraju AK, Erion DM, Rahimi Y, Zhang X-M, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, Jurczak MJ, Camporez J-P, Lee H-Y, Cline GW, Samuel VT, Kibbey RG, Shulman GI (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510:542–546. https://doi.org/10.1038/nature13270
Article
CAS
PubMed
PubMed Central
Google Scholar
Maritim AC, Sanders RA, Watkins JB (2003) Effects of alpha-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats. J. Nutr. Biochem. 14:288–294
Article
CAS
Google Scholar
Meddah B, Ducroc R, El Abbes Faouzi M, Eto B, Mahraoui L, Benhaddou-Andaloussi A, Martineau LC, Cherrah Y, Haddad PS (2009) Nigella sativa inhibits intestinal glucose absorption and improves glucose tolerance in rats. Journal of Ethnopharmacology 121:419–424. https://doi.org/10.1016/j.jep.2008.10.040
Article
PubMed
Google Scholar
National Research Council (U.S.) (1995) Nutrient requirements of laboratory animals, 4th rev. Nutrient requirements of domestic animals. National Academy of Sciences, Washington, D.C.
Google Scholar
Niknezhad F, Sayad-Fathi S, Karimzadeh A, Ghorbani-Anarkooli M, Yousefbeyk F, Nasiri E (2019) Improvement in histology, enzymatic activity, and redox state of the liver following administration of Cinnamomum zeylanicum bark oil in rats with established hepatotoxicity. Anat Cell Biol 52:302–311. https://doi.org/10.5115/acb.18.180
Article
PubMed
PubMed Central
Google Scholar
Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 46:849–854
Article
CAS
Google Scholar
Ogawa K, Ito M (2016) Appetite-enhancing effects of trans-cinnamaldehyde, benzylacetone and 1-phenyl-2-butanone by Inhalation. Planta Medica 82:84–88. https://doi.org/10.1055/s-0035-1558087
Article
CAS
PubMed
Google Scholar
Qi L-W, Liu E-H, Chu C, Peng Y-B, Cai H-X, Li P (2010) Anti-diabetic agents from natural products — an update from 2004 to 2009. Current Topics in Medicinal Chemistry 10:434–457. https://doi.org/10.2174/156802610790980620
Article
CAS
PubMed
Google Scholar
Ramesh B, Saralakumari D (2012) Antihyperglycemic, hypolipidemic and antioxidant activities of ethanolic extract of Commiphora mukul gum resin in fructose-fed male Wistar rats. Journal of Physiology and Biochemistry 68:573–582. https://doi.org/10.1007/s13105-012-0175-x
Article
CAS
PubMed
Google Scholar
Rasul A, Parveen S, Ma T (2012) Costunolide: a novel anti-cancer sesquiterpene lactone. Bangladesh Journal of Pharmacology 7. https://doi.org/10.3329/bjp.v7i1.10066
Saisho Y (2015) Metformin and inflammation: its potential beyond glucose-lowering effect. Endocrine, Metabolic & Immune Disorders-Drug Targets 15:196–205. https://doi.org/10.2174/1871530315666150316124019
Article
CAS
Google Scholar
Segal MS, Gollub E, Johnson RJ (2007) Is the fructose index more relevant with regards to cardiovascular disease than the glycemic index? European Journal of Nutrition 46:406–417. https://doi.org/10.1007/s00394-007-0680-9
Article
CAS
PubMed
Google Scholar
Sharma UK, Kumar R, Ganguly R, Gupta A, Sharmaand AK, Pandey AK (2018) Cinnamaldehyde, an active component of cinnamon provides protection against food colour induced oxidative stress and hepatotoxicity in albino Wistar rats. Vegetos- An International Journal of Plant Research 31:123. https://doi.org/10.5958/2229-4473.2018.00063.0
Article
Google Scholar
Sohrevardi SM, Nosouhi F, Hossein Khalilzade S, Kafaie P, Karimi-Zarchi M, Halvaei I, Mohsenzadeh M (2016) Evaluating the effect of insulin sensitizers metformin and pioglitazone alone and in combination on women with polycystic ovary syndrome: an RCT. Int J Reprod Biomed (Yazd) 14:743–754
CAS
Google Scholar
Subash Babu P, Prabuseenivasan S, Ignacimuthu S (2007) Cinnamaldehyde—a potential antidiabetic agent. Phytomedicine 14:15–22. https://doi.org/10.1016/j.phymed.2006.11.005
Article
CAS
PubMed
Google Scholar
Trinder P (1969) Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J. Clin. Pathol. 22:158–161
Article
CAS
Google Scholar
Villegas LR, Rivard CJ, Hunter B, You Z, Roncal C, Joy MS, Le MT (2018) Effects of fructose-containing sweeteners on fructose intestinal, hepatic, and oral bioavailability in dual-catheterized rats. PLOS ONE 13:e0207024. https://doi.org/10.1371/journal.pone.0207024
Article
CAS
PubMed
PubMed Central
Google Scholar
Viollet B, Guigas B, Garcia NS, Leclerc J, Foretz M, Andreelli F (2012) Cellular and molecular mechanisms of metformin: an overview. Clinical Science 122:253–270. https://doi.org/10.1042/cs20110386
Article
CAS
PubMed
Google Scholar
Waisundara VY, Watawana MI, Jayawardena N (2015) Costus speciosus and Coccinia grandis : traditional medicinal remedies for diabetes. South African Journal of Botany 98:1–5. https://doi.org/10.1016/j.sajb.2015.01.012
Article
Google Scholar
Wani KD, Kadu BS, Mansara P, Gupta P, Deore AV, Chikate RC, Poddar P, Dhole SD, Kaul-Ghanekar R (2014) Synthesis, characterization and in vitro study of biocompatible cinnamaldehyde functionalized magnetite nanoparticles (CPGF Nps) for hyperthermia and drug delivery applications in breast cancer. PLOS ONE 9:e107315. https://doi.org/10.1371/journal.pone.0107315
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei Z, Yan-cheng X, Fang-jian G, Ye M, Ming-li L (n.d.) Anti-diabetic effects of cinnamaldehyde and berberine and their impacts on retinol-binding protein 4 expression in rats with type 2 diabetes mellitus. Chinese Medical Journal 6
Yanardag R, Ozsoy-Sacan O, Bolkent S, Orak H, Karabulut-Bulan O (2005) Protective effects of metformin treatment on the liver injury of streptozotocin-diabetic rats. Human & Experimental Toxicology 24:129–135. https://doi.org/10.1191/0960327104ht507oa
Article
CAS
Google Scholar
Yang X, Xu Z, Zhang C, Cai Z, Zhang J (2017) Metformin, beyond an insulin sensitizer, targeting heart and pancreatic β cells. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1863:1984–1990. https://doi.org/10.1016/j.bbadis.2016.09.019
Article
CAS
Google Scholar
Yaribeygi H, Simental-Mendía LE, Butler AE, Sahebkar A (2018) Protective effects of plant-derived natural products on renal complications. Journal of Cellular Physiology. https://doi.org/10.1002/jcp.27950
Article
Google Scholar
Zhang D-M, Jiao R-Q, Kong L-D (2017) High dietary fructose: direct or indirect dangerous factors disturbing tissue and organ functions. Nutrients 9. https://doi.org/10.3390/nu9040335
Article
Google Scholar
Zhu R, Liu H, Liu C, Wang L, Ma R, Chen B, Li L, Niu J, Fu M, Zhang D, Gao S (2017) Cinnamaldehyde in diabetes: a review of pharmacology, pharmacokinetics and safety. Pharmacological Research 122:78–89. https://doi.org/10.1016/j.phrs.2017.05.019
Article
CAS
PubMed
Google Scholar