Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654. https://doi.org/10.1073/pnas.2533483100
Article
CAS
PubMed
PubMed Central
Google Scholar
Blumenstein K, Albrectsen BR, Martín JA, Hultberg M, Sieber TN, Helander M, Witzell J (2015) Nutritional niche overlap potentiates the use of endophytes in biocontrol of a tree disease. Biocontrol 60:655–667. https://doi.org/10.1007/s10526-015-9668-1
Article
Google Scholar
Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69(3):509–526. https://doi.org/10.1021/np058128n
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicoletti R, Fiorentino A (2015) Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture 5:918–970. https://doi.org/10.3390/agriculture5040918
Article
CAS
Google Scholar
Zheng YK, Qiao XG, Miao CP, Liu K, Chen Y-W, Li-H Xu, Li-X Z (2016) Diversity, distribution and biotechnological potential of endophytic fungi. Ann Microbiol 66:529–542. https://doi.org/10.1007/s13213-015-1153-7
Article
CAS
Google Scholar
Wang Y, Yang M-H, Wang X-B, Li T-X, Kong LY (2014) Bioactive metabolites from the endophytic fungus Alternaria alternata. Fitoterapia 99(12):153–158. https://doi.org/10.1016/j.fitote.2014.09.015
Article
CAS
PubMed
Google Scholar
Li X-J, Zhang Q, Zhang A-L, Gao JM (2012) Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities. J Agric Food Chem 60(13):3424–3431. https://doi.org/10.1021/jf300146n
Article
CAS
PubMed
Google Scholar
Xiao J, Zhang O, Gao Y-O, Tang J-J, Zhang A-L, Gao J-M (2014) Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant, and cytotoxic activities. J Agric Food Chem 62(16):3584–3590. https://doi.org/10.1021/jf500054f
Article
CAS
PubMed
Google Scholar
Kaur N, Arora DS, Kalia N, Kaur M (2020) Bioactive potential of endophytic fungus Chaetomium globosum and GC–MS analysis of its responsible components. Sci Rep 10(1):18792. https://doi.org/10.1038/s41598-020-75722-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Thakur JP, Haider R, Singh DK, Kumar BS, Vasudev PG, Luqman S, Kalra A, Saikia D, Negi AS (2015) Bioactive isochromenone isolated from Aspergillus fumigatus, endophytic fungus from Bacopa monnieri. Microbiol Res 6:5800. https://doi.org/10.4081/mr.2015.5800
Article
CAS
Google Scholar
Nurunnabi TR, Sarwar S, Sabrin F, Alam F, Nahar L, Sohrab H, Sarker SD, Rahman SMM, Billah M (2020) Molecular identification and antimicrobial activity of endophytic fungi isolated from Heritiera fomes (Buch.-Ham), a mangrove plant of the Sundarbans. BJBAS 9:61. https://doi.org/10.1186/s43088-020-00081-9
Yang L, Ahmed S, Stepp JR, Zhao Y, Zeng MJ, Pei S, Xue D, Xu G (2015) Cultural uses, ecosystem services, and nutrient profile of Flowering Quince (Chaenomeles speciosa) in the Highlands of Western Yunnan. China Econ Bot 69(3):273–283. https://doi.org/10.1007/s12231-015-9318-7
Article
Google Scholar
Du H, Wu J, Li H, Zhong PX, Xu YJ, Li CH, Ji KX, Wang LS (2013) Polyphenols and triterpenes from Chaenomeles fruits: chemical analysis and antioxidant activities assessment. Food Chem 141(4):4260–4268. https://doi.org/10.1016/j.foodchem.2013.06.109
Article
CAS
PubMed
Google Scholar
Miao J, Zhao C, Li X, Chen X, Mao X, Huang H, Wang T, Gao W (2016) Chemical composition and bioactivities of two common Chaenomeles fruits in China: Chaenomeles speciosa and Chaenomeles sinensis. J Food Sci 81(8):H2049-2058. https://doi.org/10.1111/1750-3841.13377
Article
CAS
PubMed
Google Scholar
Lykholat YV, Khromykh NO, Lykholat TY, Didur OO, Lykholat OA, Legostaeva TV, Kabar AM, Sklyar TV, Savosko VM, Kovalenko IM, Davydov VR, Bielyk YV, Volyanik KO, Onopa AV, Dudkina KA, Grygoryuk IP (2019) Industrial haracteristics and consumer properties of Chaenomeles Lindl. Fruits. Ukr J Ecol 9(3):132–137
Khromykh N, Lykholat Y, Shupranova L, Kabar A, Didur O, Lykholat T, Kulbachko Y (2018) Interspecific differences of antioxidant ability of introduced Chaenomeles species with respect to adaptation to the steppe zone conditions. Biosyst Divers 26(2):132–138. https://doi.org/10.15421/011821
Article
Google Scholar
Khromykh N, Lykholat Y, Anishchenko A, Didur O, Gaponov A, Kabar M, Lykholat Y (2020) Cuticular wax composition of mature leaves of species and hybrids of the genus Prunus differing in resistance to clasterosporium disease. Biosyst Divers 28(4):370–375. https://doi.org/10.15421/012047
Article
Google Scholar
Fedulova Y, Kuklina A, Sorokopudov V, Sorokopudova O, Shlapakova S, Lukashov Y, Fayzrakhmanov D, Ziganshin B, Nezhmetdinova F, Shaydullin R (2020) Screening of phytopathogens and phytopathoges on Chenomeles (CHAENOMELES LINDL.) cultivars. BIO Web Conf 17(1–2):00245. https://doi.org/10.1051/bioconf/20201700245
Article
Google Scholar
Ni H, Kong W-L, Zhang Q-Q, Wu X-Q (2021) First Report of leaf spot disease caused by Colletotrichum gloeosporioides on Chaenomeles sinensis in China. Plant Dis. https://doi.org/10.1094/pdis-11-20-2488-pdn
Article
PubMed
Google Scholar
Zhu X, Yang A, Zheng Y, Wei X, Wang J (2009) Primary research on arbuscular mycorrhizal fungi in rhizosphere of Chaenomeles speciosa in Xuancheng. Zhongguo Zhong Yao Za Zhi 34(7):820–824
PubMed
Google Scholar
Mishra VK, Passari AK, Chandra P, Leo VV, Kumar B, Uthandi S, Thankappan S, Gupta VK, Singh BP (2017) Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD-GC-MS analysis. PLoS One 12(10):e0186234. https://doi.org/10.1371/journal.pone.0186234
Article
CAS
PubMed
PubMed Central
Google Scholar
Lotfy MM, Hassan HM, Hetta MH, El-Gendy AO, Mohammed R (2018) Di(2-ethylhexyl) Phthalate, a major bioactive metabolite with antimicrobial and cytotoxic activity isolated from River Nile derived fungus Aspergillus awamori. BJBAS 7(3):263–269. https://doi.org/10.1016/j.bjbas.2018.02.002
Article
Google Scholar
Bhimba BV, Pushpam AC, Arumugam P, Prakash S (2012) Phthalate derivatives from the marine fungi Phoma herbarum VB7. IJBPR 3(4):507–512
Google Scholar
Amaral LS, Murgu M, Rodrigues-Fo E, de Souza AQ, de Moura Sarquis MI (2008) A saponin tolerant and glycoside producer xylariaceous fungus isolated from fruits of Sapindus saponaria. World J Microbiol Biotechnol 24(8):1341–1348. https://doi.org/10.1007/s11274-007-9607-0
Article
CAS
Google Scholar
Marinho AMR, Rodrigues-Filho E, Moitinho MLR, Santos LS (2005) Biologically active polyketides produced by Penicillium janthinellum isolated as an endophytic fungus from fruits of Melia azedarach. J Braz Chem Soc 16:280–283. https://doi.org/10.1590/S0103-50532005000200023
Article
Google Scholar
Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416. https://doi.org/10.1038/ismej.2007.106
Article
PubMed
Google Scholar
Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67(2):257–268. https://doi.org/10.1021/np030397v
Article
CAS
PubMed
Google Scholar
Toghueo RMK, Boyom FF (2020) Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications. 3 Biotech 10:107. https://doi.org/10.1007/s13205-020-2081-1
Article
PubMed
PubMed Central
Google Scholar
Chang J-L, Xu H-Z, Zhou J, Zhou M, Zhang X, Guo Y, Ruan H-L (2020) Antimicrobial Furancarboxylic Acids from a Penicillium sp. J Nat Prod 83(12):3606–3613. https://doi.org/10.1021/acs.jnatprod.0c00758
Article
CAS
PubMed
Google Scholar
Ahmad S, Ullah F, Sadiq A, Ayaz M, Imran M, Ali I, Zeb A, Ullah F, Shah MR (2016) Chemical composition, antioxidant and anticholinesterase potentials of essential oil of Rumex hastatus D. Don collected from the North West of Pakistan. BMC Complement Altern Med 16:29. https://doi.org/10.1186/s12906-016-0998-z
Article
CAS
PubMed
PubMed Central
Google Scholar
ur Rahman L, Ikenaga T, Kitamura Y (2004) Penicillin derivatives induce chemical structure-dependent root development, and application for plant transformation. Plant Cell Rep 22:668–677. https://doi.org/10.1007/s00299-003-0731-5
Article
CAS
PubMed
Google Scholar
Banerjee D, Pandey A, Jana M, Strobel GA (2014) Muscodor albus MOW12 an endophyte of Piper nigrum L. (Piperacae) collected from North east India produces volatile antimicrobials. Indian J Microbiol 54:27–32. https://doi.org/10.1007/s12088-013-0400-5
Article
CAS
PubMed
Google Scholar
Singh SK, Strobel GA, Knighton B, Geary B, Sears J, Ezra D (2011) An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microb Ecol 61:729–739. https://doi.org/10.1007/s00248-011-9818-7
Article
PubMed
Google Scholar
Hamza LF, Kamal SA, Hameed IH (2015) Determination of metabolites products by Penicillium expansum and evaluating antimicrobial activity. J Pharmacogn Phytotherapy 7(9):194–220. https://doi.org/10.5897/JPP2015.0360
Article
CAS
Google Scholar
Diab TA, Donia T, Saad-Allah KM (2021) Characterization, antioxidant, and cytotoxic effects of some Egyptian wild plant extracts. BJBAS 10:13. https://doi.org/10.1186/s43088-021-00103-0
Article
Google Scholar