Boffetta P, Jourenkova N, Gustavsson P (1997) Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control 8(3):444–472
CAS
PubMed
Google Scholar
Boehm PD (1964) Polycyclic aromatic hydrocarbons (PAHs). In: Environmental forensics. Elsevier, pp 313–337
Boonchan S, Britz ML, Stanley GA (1998) Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia. Biotechnol Bioeng 59(4):482–494
CAS
PubMed
Google Scholar
Raiyani C (1993) Level of polycyclic aromatic hydrocarbon in ambient environment of Ahmedabad city. Indian J Environ Prot 13:206–215
CAS
Google Scholar
Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol 4(3):331–338
CAS
Google Scholar
Menzie CA, Potocki BB, Santodonato J (1992) Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 26(7):1278–1284
CAS
Google Scholar
McVeety BD, Hites RA (1988) Atmospheric deposition of polycyclic aromatic hydrocarbons to water surfaces: a mass balance approach. Atmospheric Environment (1967). 22(3):511–536
CAS
Google Scholar
Seo J-S, Keum Y-S, Li Q (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6(1):278–309
CAS
PubMed
PubMed Central
Google Scholar
Birkett JW, Lester JN (2002) Endocrine disrupters in wastewater and sludge treatment processes. IWA Publishing, London
Google Scholar
Bidoia ED, Montagnolli RN (2018) Toxicity and biodegradation testing. Springer, Berlin
Google Scholar
WHO, Guidelines for air quality. 2000, World Health Organization: WHO, Geneva. (http://www.who.int/peh/).
Jacques RJS et al (2005) Anthracene biodegradation by Pseudomonas sp. isolated from a petrochemical sludge landfarming site. Int Biodeterior Biodegrad 56(3):143–150
CAS
Google Scholar
Neelofur MS, Shyam P, Mahesh M (2014) Enhance the biodegradation of Anthracene by mutation from Bacillus species. BMR Biotechnol 1:1–19
Google Scholar
Al Farraj DA et al (2020) Polynuclear aromatic anthracene biodegradation by psychrophilic Sphingomonas sp., cultivated with tween-80. Chemosphere 263:128115
PubMed
Google Scholar
Hurst GH (1892) A Dictionary of the Coal Tar Colours. https://books.google.com.eg/books/about/A_Dictionary_of_the_Coal_Tar_Colours.html?id=lY45AQAAIAAJ&redir_esc=y: Heywood and Company, p 12
Khillare P, Balachandran S, Hoque RR (2005) Profile of PAH in the exhaust of gasoline driven vehicles in Delhi. Environ Monit Assess 110(1–3):217–225
CAS
PubMed
Google Scholar
Tarafdar A, Sinha A, Masto RE (2017) Biodegradation of anthracene by a newly isolated bacterial strain, Bacillus thuringiensis ATISM1, isolated from a fly ash deposition site. Lett Appl Microbiol 65(4):327–334
CAS
PubMed
Google Scholar
Bonnet J et al (2005) Assessment of anthracene toxicity toward environmental eukaryotic microorganisms: Tetrahymena pyriformis and selected micromycetes. Ecotoxicol Environ Saf 60(1):87–100
CAS
PubMed
Google Scholar
Sun K et al (2020) Anthracene-induced DNA damage and oxidative stress: a combined study at molecular and cellular levels. Environ Sci Pollut Res 27(33):41458–41474
CAS
Google Scholar
Sun, K., et al., Toxicity assessment of Fluoranthene, Benz (a) anthracene and its mixed pollution in soil: Studies at the molecular and animal levels. Ecotoxicology and Environmental Safety, 2020. 202: 110864.
Yuan M et al (2017) An integrated biomarker response index for the mussel Mytilus edulis based on laboratory exposure to anthracene and field transplantation experiments. Chin J Oceanol Limnol 35(5):1165
CAS
Google Scholar
Holst LL, Giesy JP (1989) Chronic effects of the photoenhanced toxicity of anthracene on Daphnia magna reproduction. Environ Toxicol Chem Int J 8(10):933–942
CAS
Google Scholar
Brown IV, Lane BP, Pearson J (1977) Effects of depot injections of retinyl palmitate on 7, 12-dimethylbenz [a] anthracene-induced preneoplastic changes in rat skin. J Natl Cancer Inst 58(5):1347–1355
CAS
PubMed
Google Scholar
Badis I (2016) Biodegradation of diesel and isomerate by pseudomonas aeruginosa and Brevibacillus laterosporus isolated from hydrocarbons contaminated soil. Adv Environ Biol 10(7):208–215
Google Scholar
Chaillan F et al (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155(7):587–595
CAS
PubMed
Google Scholar
Whyte LG, Bourbonniere L, Greer CW (1997) Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl Environ Microbiol 63(9):3719–3723
CAS
PubMed
PubMed Central
Google Scholar
Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):180
PubMed
PubMed Central
Google Scholar
Bezalel L et al (1996) Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62(7):2554–2559
CAS
PubMed
PubMed Central
Google Scholar
Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20(6):243–248
CAS
PubMed
Google Scholar
Moody JD et al (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67(4):1476–1483
CAS
PubMed
PubMed Central
Google Scholar
Ye J-S et al (2011) Biodegradation of anthracene by Aspergillus fumigatus. J Hazard Mater 185(1):174–181
CAS
PubMed
Google Scholar
Theurich J et al (1997) Photocatalytic degradation of naphthalene and anthracene: GC-MS analysis of the degradation pathway. Res Chem Intermed 23(3):247–274
CAS
Google Scholar
Bibi N et al (2018) Anthracene biodegradation capacity of newly isolated rhizospheric bacteria Bacillus cereus S13. PLoS ONE 13(8):e0201620
PubMed
PubMed Central
Google Scholar
Rights, E.I.f.P. World Environment Day. 2018; Available from: https://eipr.org/publications.
Hesham Ael L et al (2014) Biodegradation ability and catabolic genes of petroleum-degrading Sphingomonas koreensis strain ASU-06 isolated from Egyptian oily soil. Biomed Res Int 2014.
Altschul SF et al (1990) Basic local alignment search tool(BLAST). J Mol Biol 215(3):403–410
CAS
PubMed
Google Scholar
Kumar S et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549
CAS
PubMed
PubMed Central
Google Scholar
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680
CAS
PubMed
PubMed Central
Google Scholar
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425
CAS
PubMed
Google Scholar
Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791
PubMed
Google Scholar
Liang Q et al (2005) Chromosome-encoded gene cluster for the metabolic pathway that converts aniline to TCA-cycle intermediates in Delftia tsuruhatensis AD9. Microbiology 151(10):3435–3446
CAS
PubMed
Google Scholar
Takeo M, Fujii T, Maeda Y (1998) Sequence analysis of the genes encoding a multicomponent dioxygenase involved in oxidation of aniline and o-toluidine in Acinetobacter sp. strain YAA. J Ferment Bioeng 85(1):17–24
CAS
Google Scholar
Geng L et al (2009) Functional analysis of a putative regulatory gene, tadR, involved in aniline degradation in Delftia tsuruhatensis AD9. Arch Microbiol 191(7):603–614
CAS
PubMed
Google Scholar
Urata M et al (2004) Genes involved in aniline degradation by Delftia acidovorans strain 7N and its distribution in the natural environment. Biosci Biotechnol Biochem 68(12):2457–2465
CAS
PubMed
Google Scholar
Zhou J et al (2011) Optimization of phenol degradation by Candida tropicalis Z-04 using Plackett–Burman design and response surface methodology. J Environ Sci 23(1):22–30
CAS
Google Scholar
Khorasani AC, Mashreghi M, Yaghmaei S (2014) Optimization of biomass and biokinetic constant in Mazut biodegradation by indigenous bacteria BBRC10061. J Environ Health Sci Eng 12(1):98
PubMed
PubMed Central
Google Scholar
Lee S-Y, Lee J-Y, Shin H-S (2015) Evaluation of chemical analysis method and determination of polycyclic aromatic hydrocarbons content from seafood and dairy products. Toxicol Res 31(3):265
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci 101(30):11030–11035
CAS
PubMed
PubMed Central
Google Scholar
Enzminger J, Ahlert R (1987) Environmental fate of polynuclear aromatic hydrocarbons in coal tar. Environ Technol Lett 8(1–12):269–278
CAS
Google Scholar
Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119
CAS
PubMed
Google Scholar
Łebkowska M et al (2011) Bioremediation of soil polluted with fuels by sequential multiple injection of native microorganisms: Field-scale processes in Poland. Ecol Eng 37(11):1895–1900
Google Scholar
Reddy MS et al (2010) Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp. Biores Technol 101(20):7980–7983
CAS
Google Scholar
Wei K et al (2018) Bioremediation of triphenyl phosphate by Brevibacillus brevis: degradation characteristics and role of cytochrome P450 monooxygenase. Sci Total Environ 627:1389–1395
CAS
PubMed
Google Scholar
Yoon S et al (2011) Constitutive expression of pMMO by Methylocystis strain SB2 when grown on multi-carbon substrates: implications for biodegradation of chlorinated ethenes. Environ Microbiol Rep 3(2):182–188
CAS
PubMed
Google Scholar
Kikuchi T et al (2002) Quantitative and rapid detection of the trichloroethylene-degrading bacterium Methylocystis sp. M in groundwater by real-time PCR. Applied microbiology and biotechnology 59(6):731–736
CAS
PubMed
Google Scholar
Schützendübel A et al (1999) Degradation of fluorene, anthracene, phenanthrene, fluoranthene, and pyrene lacks connection to the production of extracellular enzymes by Pleurotus ostreatus and Bjerkandera adusta. Int Biodeterior Biodegrad 43(3):93–100
Google Scholar
Wald J et al (2015) Pseudomonads rule degradation of polyaromatic hydrocarbons in aerated sediment. Front Microbiol 6:1268
PubMed
PubMed Central
Google Scholar
Annadurai G, Ling LY, Lee J-F (2008) Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida. J Hazard Mater 151(1):171–178
CAS
PubMed
Google Scholar
Van Herwijnen R et al (2003) Degradation of anthracene by Mycobacterium sp. strain LB501T proceeds via a novel pathway, through o-phthalic acid. Appl Environ Microbiol 69(1):186–190
PubMed
PubMed Central
Google Scholar
Cui C et al (2014) Metabolic pathway for degradation of anthracene by halophilic Martelella sp. AD-3. Int Biodeterior Biodegrad 89:67–73
CAS
Google Scholar
Hadibarata T, Khudhair AB, Salim MR (2012) Breakdown products in the metabolic pathway of anthracene degradation by a ligninolytic fungus Polyporus sp. S133. Water Air Soil Pollut 223(5):2201–2208
CAS
Google Scholar
Swaathy S et al (2014) Microbial surfactant mediated degradation of anthracene in aqueous phase by marine Bacillus licheniformis MTCC 5514. Biotechnol Rep 4:161–170
Google Scholar