Skip to main content

Antiplasmodial evaluation of aqueous extract of Blighia sapida K.D. Koenig leaves in Plasmodium berghei (NK65)-infected mice

Abstract

Background

The study was designed to screen aqueous extract of Bilghia sapida leaves for its phytochemical constituents, in vivo antiplasmodial activity and biochemical changes in Plasmodium berghei (NK65)-infected female mice. Phytochemical screening was done using standard methods. In the acute toxicity test, three groups of mice received 1000, 2000 and 3000 mg/Kg/day of the extract respectively, and were observed for signs of toxicity, especially mortality for 24 h. Forty-eight mice were assigned into six groups of eight animals each. The uninfected group A (control) was administered distilled water, while groups B, C, D, E and F were inoculated intraperitoneally with about 107 parasitized erythrocytes and received distilled water, chloroquine (5 mg/Kg/day), 125, 250 and 500 mg/Kg/day of extract, respectively. The antiplasmodial activity was evaluated using Peter’s 4 days suppressive test. Haematological indices, selected biochemical parameters and liver histology were evaluated.

Results

Screening revealed the presence of six phytochemicals in the aqueous extract of B. sapida leaves. Median lethal dose of the extract is > 5,000 mg/Kg/day. The aqueous extract of the leaves significantly (P < 0.05) reduced the level of parasitaemia dose-dependently with chemosuppression of 74.09% at 500 mg/Kg/day. The extract significantly (P < 0.05) prevented P. berghei infection-associated reduction in red blood cell indices. The significant (P < 0.05) P. berghei-induced alterations in liver function indices were improved in extract-treated mice. There were no visible lesions in the livers of animals that received 125 mg/Kg/day of extract.

Conclusion

The aqueous extract of B. sapida leaves has in vivo antiplasmodial activity and justifies its folkloric use in malarial treatment.

Background

Malaria, an infectious disease of the blood caused by plasmodium parasites (P. falciparum, P. vivax, P. malariae, P. ovale and P. knowlesi), is associated with fever, anaemia, and other pathologies [37]. In severe cases, malaria leads to coma and death [6]. The deadliest of the five plasmodium species is P. falciparum, which is predominantly present in Africa [41]. With about 3.2 billion people at risk, malaria continues to be a major global public health challenge [12]. In 2020, about 228 million cases of malaria with about 602,000 deaths were reported in Africa. This represents about 95% of the 241 million global cases and 96% of the 627,000 deaths for the year, respectively [45]. Nigeria suffers approximately 30% of the malaria incidence in Africa, the greatest burden in the world [12]. With about 97% of Nigerians at risk of malaria, every part of the country is susceptible to the infection. Treatment of human malaria aims at interrupting the blood schizogony (intra-erythrocytic asexual multiplication) that causes the pathogenesis and clinical symptoms of the infection. Unfortunately, P. falciparum, P. vivax and P. malariae have developed resistance to many of the orthodox antimalarials [37]. Antimalarials in current use include quinolones, antifolates, artemisinin derivatives, and hydroxynaphthaquinones [34]. The problem of antimalarial drug resistance is compounded by cross-resistance, in which resistance to one drug confers resistance to other drugs that belong to the same chemical family or have similar modes of action. Apart from the issue of drug resistance, pharmaceuticals are expensive and inaccessible to most of the world’s population [32]. Since the first antimalarial drug came from a plant and given the fact that there is a vast majority of plants with medicinal properties in the same region plagued with malaria, it is logical to explore more plants for prospective antimalarials to circumvent the challenges of drug resistance and high cost of orthodox treatment.

Blighia sapida is a woody, perennial, multipurpose fruit tree species that belongs to the Sapindaceae family. It is commonly known as “Ackee” (English). In Nigeria, it is called Gwanja Kusa (Hausa, Northern Nigeria), Isin (Yoruba, Western Nigeria) and Okpu (Igbo, Eastern Nigeria) [31]. B. sapida may reach 12–13 m high, with a spreading crown and ribbed branchlets. The stem is about 1.8 m in circumference with a grey and nearly smooth bark. The leaves are evergreen with an acute to rounded base that tapers to a point at the tip [15]. In folk medicine practice, the leaves and bark of B. sapida are used for treatment of many ailments as summarized in Table 1. Many researchers have also reported various biological activities for leaves and stem back of the plant (Table 1). However, there is a dearth of information regarding the in vivo antiplasmodial potential of B. sapida leaves. Hence, this study was designed to screen aqueous extract of the leaves of B. sapida for its phytochemical constituents, evaluate its in vivo antiplasmodial activity and biochemical changes associated with the infection.

Table 1 Traditional uses and biological activities of B. sapida

Materials and methods

Materials

Plant material

Leaves of B. sapida (Fig. 1) were obtained, in July 2013 from Ayedaade area, Ogbomoso North Local Government of Oyo State, Nigeria (Latitude: 8° 8′ 31.7940′′ N, Longitude: 4° 14′ 42.6696′′ E, with average temperature and relative humidity of 21.4–35.1 °C and 43–85%, respectively), and authenticated at the Herbarium unit of the Department of Plant Biology, University of Ilorin, Ilorin, Nigeria. A voucher specimen was deposited in the Departmental Herbarium under UIH001/1091.

Fig. 1
figure 1

Leaves and fruits of B. sapida

Experimental animals

Female Swiss albino mice (Mus musculus) (21.04 ± 0.27 g) were obtained from the Animal Holding Unit of the Institute of Advanced Malaria Research and Training, University College Hospital, Ibadan, Nigeria. The animals were housed in plastic cages under standard laboratory conditions (temperature: 28–31 °C; photoperiod: 12 h natural light and 12-h dark; humidity: 50–55%), fed with rat pellets (Grand Cereals Limited, Jos, Plateau State) and allowed free access to tap water. They were acclimatized for two weeks in the Animal Holding Unit of the Department of Biochemistry, University of Ilorin, Ilorin, Nigeria.

Malaria parasite

A mouse infected with P. berghei (NK65) was obtained from the Institute for the Advanced Malaria Research and Training, Ibadan. The parasite was subsequently maintained in the laboratory by serial blood passage from mouse to mouse.

Assay kits, chemicals and reagents

Chloroquine phosphate was manufactured by May and Baker Nigeria Plc, Otta, Nigeria, while Giemsa stain was a product of Sigma-Aldrich Chemical Company, St Louis, MO, USA. Lactate dehydrogenase (LDH) assay kit was a product of Biosystems S.A. Costa Brava, Barcelona, Spain, while those of albumin, bilirubin, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) were products of Randox Laboratories Ltd., United Kingdom.

Methods

Preparation of plant extract

The leaves of B. sapida were carefully separated from the stem, washed with tap water to remove debris and dust, and shade-dried. The dried leaves were then pulverized using an electrical Optimal Mixer Blender (MG 2053, Usha International, England). A known amount (300 g) of the powder was extracted in 3 L of distilled water for 72 h at 280C with intermittent shaking. The extract was filtered with Whatman No 1 (185 mm) filter paper. The filtrate was lyophilized to yield 14.46 g aqueous extract of B. sapida leaves which corresponded to 4.82%. The extract was then refrigerated at 4 °C and used within seven days.

Phytochemical screening

The extract was screened for the presence of alkaloids, steroids, saponins, flavonoids, phlobatannins, tannins, anthraquinones, cardiac glycosides, phenolics and, triterpenes [16, 36]. The phytochemicals were quantified as described for alkaloids, saponins, tannins phenolics, cardiac glycosides and phlobatannins [16].

Acute toxicity testing

Twelve female mice (13.62 ± 0.52 g) were assigned into three groups of four animals each. Animals in Groups 1, 2 and 3 received a single dose each of 1000, 2000 and 5000 mg/Kg/day of aqueous extract of B. sapida leaves, respectively. The mice were observed for signs of toxicity such as salivation, restlessness, vomiting, and mortality for 24 h and 14 days.

Animal handling and evaluation of antiplasmodial activity of the extract

Forty-eight mice (21.04 ± 0.27 g) were completely randomized into six groups of eight animals each. Animals in Group A (normal control) were not infected with P. berghei but received 0.2 ml of distilled water while those in groups B (negative control), C, D, E and F were all inoculated with erythrocytes containing approximately 107 P. berghei and afterwards treated with 0.2 ml of distilled water, 0.2 ml corresponding to 5 mg/Kg/day of chloroquine phosphate, 125, 250 and 500 mg/Kg/day of aqueous extract of B. sapida leaves, respectively. A 4-day suppressive test was performed according to the procedure described by Peters and Robinson [33]. Each experimental mouse received the first dose of treatment 4-h post-infection (D0) with P. berghei (NK65). Subsequent treatments were administered 24 (D1), 48 (D2), 72 (D3) and 96 (D4) hours after the first dose. Blood samples collected from the tails of the mice on D4 were used for the preparation of thin films on microscope slides. The slides were thereafter fixed in methanol, stained with 5% Giemsa for 3 min, rinsed with water and left to dry. The blood smear was mounted on the microscope with immersion oil and viewed at a magnification of × 100. Percentage parasitaemia was determined by counting the number of parasitized red blood cells and non-parasitized red blood cells in 4 fields of approximately 100 erythrocytes per field. Percentage parasitaemia and % inhibition of parasitaemia were computed using the following expressions:

$$\% {\text{parasitaemia}} = \frac{{{\text{Number}}\;{\text{of}}\;{\text{parasitized}}\;{\text{erythrocytes}}}}{{{\text{Number}}\;{\text{of}}\;{\text{parasitized}}\;{\text{erythrocytes}} + {\text{number}}\;{\text{of}}\;{\text{non - parasitized}}\;{\text{erythrocytes}}}} \times 100$$
$${\text{Mean}} \;\% {\text{chemo - suppression}} = \frac{{{\text{Mean}} \;\% {\text{parasitaemia}}\;{\text{in}}\;{\text{control}} - {\text{mean}}\;\% {\text{parasitaemia}}\;{\text{in}}\;{\text{test}}}}{{ {\text{Mean}}\;\% {\text{parasitaemia}}\;{\text{in}}\;{\text{control}}}} \times 100$$

Determination of haematological parameters

The animals were made unconscious and sacrificed under diethyl ether fumes. An aliquot of blood was collected by cardiac puncture into sample bottles containing EDTA. The haematological parameters analysed using the Sysmex Automated Haematology Diagnostic Machine (XP-300, Mundelein, USA) include red blood cell count (RBC), white blood cell count (WBC), haematocrit (% PCV), haemoglobin concentration (Hb) and platelet count (PLT).

Preparation of serum and liver supernatants

Blood was also collected into clean, dry centrifuge tubes and left for 10 min at 280C to clot. The tubes were then centrifuged at 3000 × g for 15 min. The serum was aspirated into sample bottles with the aid of Pasteur pipettes and used for biochemical assay. The liver was quickly excised from the animals, rinsed with ice-cold phosphate buffered saline (PBS) solution and blotted with blotting paper and weighed. A portion of the liver was homogenized in ice-cold PBS (1:10 w/v) [25]. The homogenates were centrifuged at 3000 × g for 15 min to obtain the supernatants which were used within 24 h for the analysis of the biochemical parameters.

Determination of biochemical parameters

The activity of alanine aminotransferase (ALT), aspartate aminotransferase (AST) lactate dehydrogenase (LDH) and alkaline phosphatase (ALP), as well as total and direct bilirubin, were determined as described on the kits manufacturers’ guidelines. The procedure described by Doumas et al. [13] was adopted for determining the level of serum albumin. Serum globulin level was obtained from the difference between serum albumin and the serum total protein content [40].

Histological examination of the liver

The liver of the animals was fixed in 10% (v/v) formal saline for 24 h, dehydrated through ascending grades of ethanol (70%, 90% and 95% v/v), cleaned in xylene and embedded in paraffin wax (melting point 56 °C). Tissue sections were prepared according to the method described by Drury and Wallington [14] and stained with haematoxylin/eosin (H&E). The processed histology slides were read with an Olympus light microscope (CX21FSI, Tokyo, Japan). Photomicrographs of the liver were captured at × 400 with Presto Image Folio package software.

Data analysis

Data were expressed as the means ± S.E.M. of eight determinations except for the phytochemicals. Means were analysed using Duncan’s Multiple Range Tests. Statistical Package for Social Sciences, version 20.0 (SPSS Inc. Chicago, USA) was used for statistical analyses. Differences were considered statistically significant at P < 0.05.

Results

Screening revealed the presence of six phytochemicals in the aqueous extract of B. sapida leaves (Fig. 2). Alkaloids have the highest concentration while phlobatannins were the least abundant.

Fig. 2
figure 2

Phytochemical contents of aqueous extract of B. sapida leaves

There was no mortality, stooling, respiratory distress, or salivation during the acute toxicity study when the graded doses (1000–5000 mg/Kg/day) of the extract were administered orally. Restlessness was observed in the animals that received 5000 mg/Kg/day at 10 min post-administration.

The aqueous extract of B. Sapida leaves significantly (P < 0.05) reduced the level of parasitaemia dose-dependently (Table 2). Chemosuppression of 54.76, 70.44 and 74.09% occurred at doses of 125, 250 and 500 mg/Kg/day, respectively.

Table 2 Effect of 4-day post-infection administration of aqueous extract of B. sapida leaves on the % parasitaemia and % chemosuppression in P. berghei-infected female albino mice

RBC, Hb and PCV were significantly (P < 0.05) reduced by P. berghei infection. However, the extract reversed this trend significantly (P < 0.05) at all the doses studied. Extract-induced increase in PCV was in a dose-dependent manner. RBC, Hb and PCV in the extract-treated animals were not significantly different from those of normal control animals. There was no significant difference (P < 0.05) in WBC and PLT across all experimental groups. There was a significant (P < 0.05) increase in the LYM (%) of extract-treated animals at 125 and 250 mg/Kg/day of extract relative to those of other groups (Table 3).

Table 3 Effect of aqueous extract of B. sapida leaves on selected haematological parameters of P. berghei-infected female albino mice

Serum ALT activity was significantly raised (P < 0.05) by P. berghei infection. This rise was significantly suppressed in the 125 and 250 mg/Kg/day of extract-treated animals. The 500 mg/Kg/day dose elevated serum ALT activity when compared with the normal control animals. The activity of serum AST was significantly elevated in P. berghei-infected mice and this was suppressed in extract-treated mice compared with the untreated animals. However, within the treated groups, serum activity of AST increase significantly with dose. Serum ALP was significantly increased (P < 0.05) in the negative control animals but this was ameliorated following administration of the extract (Table 4).

Table 4 Effect of aqueous extract of B. sapida leaves on selected marker enzymes of P. berghei-infected female albino mice

The activity of serum LDH was significantly increased (P < 0.05) in a dose-dependent manner in the extract-treated animals relative to normal control animals (Table 4).

Infection with P. berghei produced a significant increase in the liver body weight ratio of the animals from 4.63% (in normal control) to 8.70% (negative control). This increase was remarkably averted by the extract at all doses (Table 5). P. berghei infection reduced the levels of serum albumin significantly in the negative control group (P < 0.05) while the extract increased the same in a dose-dependent manner with 500 mg/Kg/day having no significant (P < 0.05) difference compared to normal control animals. There was a significant increase (P < 0.05) in serum globulin after infection with P. berghei. This was thereafter reduced significantly (P < 0.05) following the administration of the extract at all doses. Total bilirubin was significantly lowered by the administration of the extract (P < 0.05). Direct (conjugated) bilirubin was not altered in the group treated with the lowest dose of the extract (125 mg/Kg/day) but significantly raised (P < 0.05) in those that received higher doses of the extract (Table 5).

Table 5 Effect of aqueous extract of B. sapida leaves on selected liver function indices of P. berghei-infected female albino mice

Histological examination revealed no visible lesions in the liver of animals in the normal control group (Fig. 3A); a very mild diffuse vacuolar degeneration of hepatocytes in P. berghei-infected animals (negative control) (Fig. 3B). There was also a mild-to-moderate periportal cellular infiltration by mononuclear cells. The animals that received 125 mg/Kg/day of extract had no visible lesions in the liver (Fig. 3D). The animals that received 250 and 500 mg/Kg/day of extract produced mild hydropic degeneration limited to the portal area and moderate diffuse vacuolar degeneration of hepatocytes (Fig. 3E and F).

Fig. 3
figure 3

Cross section of liver of female albino mice infected with P. berghei and administered B distilled water, C 5 mg/Kg/day of chloroquine, D 125 mg/Kg/day, E 250 mg/Kg/day, F 500 mg/Kg/day of aqueous extract of Blighia sapida leaves. A Normal control (×400; H&E)

Discussion

Plant extracts contain different phytochemicals which are responsible for their biological, pharmacological and toxic effects. These phytochemicals and their corresponding activities confer medicinal advantages on plants. Results from this study showed the presence of alkaloids, saponins, tannins, phlobatannins, phenolics and cardiac glycosides in the aqueous extract of B. sapida leaves. Similar results were reported by Ologundudu et al. [27]. These phytochemicals are either individually, addictively or synergistically responsible for the effects observed afterwards. An acute toxicity study gives a clue on the range of doses that could be used in estimating the therapeutic index of drugs and xenobiotics as well as subsequent toxicity testing [35]. B. sapida leaf extract was found to be non-lethal up to an oral dose of 5000 mg/Kg/day. The same was reported in a similar work, where it was observed that the aqueous extract was not lethal up to 5000 mg/Kg/day in both rats and mice [26]. This creates a benchmark of doses that can be used for evaluating the biological activities of the plant extract and thus, does not implies that the extract will not produce systemic toxicity. One-tenth of this was used as the highest dose in the antiplasmodial experiment in other to minimize systemic toxicity.

In vivo models are usually employed in antimalarial studies because they take into account possible pro-drug effects and contributions of the innate immune system in the eradication of the pathogen [39]. The results of this study showed that the aqueous extract of B. sapida leaves suppressed the multiplication of malaria parasite at 250 and 500 mg/Kg/day up to 70% chemosuppression (Table 2). Compounds that reduce parasitaemia by 30% or more are considered active and are further evaluated in secondary screens [1], thus with a parasitaemia reduction of 54.76 ± 4.62, 70.44 ± 3.83 and 74.09 ± 5.97% by 125, 250 and 500 mg/Kg/day, respectively, aqueous extract of B. sapida qualifies for further evaluation for its antimalarial property. Although the %chemosuppression observed in extract-treated animals is lower than that of chloroquine, the extract is a cocktail of compounds constituting both the antiplasmodial and non-antiplasmodial principles, and isolation and purification of antiplasmodial principle(s) could improve the antiplasmodial activity. The %chemosuppression of P. berghei by the extract studied is higher than those achieved with 80% methanol extract of Vernonia amygdalina, a popular Nigerian plant traditionally used for malaria with only 37.67% suppression [11]. The observed antimalarial activity may be linked to the phytochemicals (Fig. 2) present in the extract. Alkaloids are one of the major classes of natural products that exhibit antimalarial activity. Indeed, quinine, the first antimalarial drug, belongs to this class. Previous studies have shown that plant-derived alkaloids have a great potential for antimalarial drug development [28]. A study reported that plants whose phytochemical compounds include alkaloids, anthraquinones and saponins may have antimalarial activities [10]. These reports are similar to those obtained in this study as aqueous extract of B. sapida leaves contains alkaloids, saponins, and tannins. Saponins are detrimental to several infectious protozoans, one of which is the Plasmodium species [4]. Some tannins have also shown antiplasmodial activity as reported by Keita et al. [20] with IC50 of 46.9 ± 1.12 and 67.8 ± 2.39 μg/mL for chloroquine-sensitive and -resistant strains of P. falciparum, respectively. Tannins, being phenolics, also act as antioxidants or free radical scavengers and may alleviate the oxidative stress associated with malaria, which plays an important role in malaria-associated anaemia [29]. The antiplasmodial activity may also be a result of a synergistic effect of two or more of the phytochemicals as phenolics have been reported to significantly act in synergy with some first-line malaria drugs [24]. Antiplasmodial activities have also been reported for Paullinia pinnata [5] which also belongs to the Sapindaceae family as B. sapida.

The extract also showed the ability to ameliorate anaemia due to malaria by maintaining the red blood cell counts (RBC), haemoglobin concentration (Hb) and packed cell volume (PCV) in P. berghei-infected and extract-treated mice. The observed prevention of anaemia by the extract was not significantly different from that of chloroquine. The clearance and/or destruction of infected erythrocytes, the clearance of uninfected erythrocytes and erythropoietic suppression and dyserythropoiesis, all contribute to malaria anaemia [46]. Thus this anti-anaemic activity may be attributed to its ability to suppress parasite multiplication (as evidenced by a reduction in % parasitaemia) thereby reducing the number of parasitized erythrocytes billed for splenic destruction. It may also be that the extract has some stimulatory effect on the production of red blood cells (erythropoiesis). This aligns with the findings of Mboso et al. [22] who reported the erythropoietic effects of Eremomastax polysperma leaf extracts on female prepubertal and pubertal Wistar rats. Lymphocyte counts were increased by the extract. The observed increase in WBC in the extract-treated animals may result from stimulation of the immune system of the animals to fight the malaria parasites (Table 3). White blood cells function mainly to fight infection, defend the body by phagocytosis against invasion by foreign organisms, and produce, transport and distribute antibodies in the immune response. Many antimalarial herbal preparations may exert their antiinfective activity not only by affecting the parasite directly but may also stimulate the defensive system of the host by other mechanisms [39].

The liver plays a very crucial role in the pathology of malaria where sporozoites develop into merozoites [44]. It also plays a central role in the metabolism and excretion of xenobiotics and this makes it susceptible to their toxic effects. The extract lowered the enlargement of the liver caused by malaria infection in a dose-related manner (Table 5). An association has been established between the level of malaria parasitaemia and hepatomegaly. The extract at all doses was able to ameliorate the enlargement. This may be a direct effect of the ability of the extract to suppress the multiplication of the malaria parasite. Serum activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) are useful indicators of the well-being of the liver and are thus useful marker enzymes of liver cytolysis [23]. Although administration of the extract prevented the infection-associated increase in serum activities of the two aminotransferases at 125 mg/Kg/day body weight, a significant increase (P < 0.05) in the serum activities of ALT and AST at higher doses (250 and 500 mg/Kg/day body weight) when compared with those of the animals in the control group may imply that the extract at such doses may cause injury to the liver or other tissues with a significant amount of these cytosolic enzymes. The lack of significant change in the serum activity of ALP in the extract-treated group suggests that the extract may not cause hepatobiliary injury and cholestasis [38]. The activity of LDH significantly increased with extract administration in a dose-dependent manner, similar to what was obtained with Cardiospermum helicacabum [9]. LDH is present in all cells of the body with the highest concentration in the erythrocytes, heart, liver, kidney, lung and pancreas and can indicate injury in any of them [17]. Since the result of the chemosuppression test as well as the haematological parameters showed that the extract processes an antiplasmodial activity, the rise in LDH activity may not be linked to malaria haemolysis. Thus the dose-dependent, significant increase in serum LDH activity may need to be further investigated before the safety or otherwise of the extract would be determined.

The extract caused a significant increase and decrease in the level of serum albumin and globulin, respectively, which were altered by P. berghei infection. (Table 5). Albumin is quantitatively the most important protein in plasma synthesized by the liver and is a useful indicator of the synthetic function of the liver. The reduction in albumin concentrations of P. berghei-infected animals may be attributed to decreased rate of hepatic synthesis of albumin which did not commensurate with the rate of its catabolism [21]. But the extract at all doses investigated maintained the levels of these proteins in levels not significantly different from the control meaning that the extract did not impair the synthetic function of the liver. Bilirubin, a marker for liver damage, is the major breakdown product of haemoglobin of red blood cells. The extract did not cause an increase in the total bilirubin level and it is an indication that the extract may not impair the excretory function of the liver [18]. Only the lowest dose of the extract (125 mg/Kg/day body weight) showed no visible lesion on the liver. Hepatic portal degeneration and congestion caused by higher doses (250 and 500 mg/Kg/day body weight) of the extract is an indication of damage to the liver. This further corroborates the elevated level of serum ALT and AST activities in the 500 mg/Kg/day body weight of extract-treated animals. These findings connote that aqueous extract of B. sapida leaves may not be save for consumption at doses beyond 125 mg/Kg/day bodyweight.

Conclusion

From the results of this study, the aqueous extract of B. sapida leaves has in vivo antiplasmodial activity as it suppresses the development of Plasmodium berghei. This justifies the use of the plant in the treatment of malaria in folkloric medicine. The antiplasmodial activity could be due to any of the phytochemicals present in the extract or synergy between two or more of them. Further studies will be needed for isolation, characterization and identification of the active principle as well as safety evaluation.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

LD50 :

Median lethal dose

LDH:

Lactate dehydrogenase

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

ALP:

Alkaline phosphatase

EDTA:

Ethylenediamine tetraacetic acid

RBC:

Red blood cell count

WBC:

White blood cell count

% PCV:

Haematocrit

Hb:

Haemoglobin concentration

PLT:

Platelet count

PBS:

Phosphate buffered saline

References

  1. Abay ET, van der Westuizen JH, Swart KJ, Gibhard L, Lawrence N, Dambuza N, Wilhelm A, Pravin K, Wiesner L (2015) Efficacy and pharmacokinetic evaluation of a novel anti-malarial compound (NP046) in a mouse model. Mal J 14:8. https://doi.org/10.1186/1475-2875-14-8

    Article  CAS  Google Scholar 

  2. Abd El-Gani MM (2016) Traditional medicinal plants of Nigeria: an overview. Agric Biol J North Am 7(5):220–247

    Google Scholar 

  3. Adebajo AC, Famuyiwa FG, John JD, Idem ES, Adeoye AO (2012) Activities of some Nigerian medicinal plants against Aedes aegypti. Chin Med 3:151–156

    Article  Google Scholar 

  4. Adewoye EO, Salami AT, Taiwo VO (2010) Anti-plasmodial and toxicological effects of methanolic bark extract of Chrysophyllum albidum in albino mice. J Physiol Pathophysiol 1(1):1–9

    Google Scholar 

  5. Adeyemo-Salami OA, Farombi EO, Ademowo OG (2014) An investigation into the antimalarial effect of methanolic extract of Paullinia pinnata leaves in Plasmodium berghei infected mice and course of infection. Afr J Med Sci 43(Suppl 1):93–100

    CAS  Google Scholar 

  6. Adumanya OCU, Uwakwe AA, Essien EB (2014) Antiplasmodial activity of methanol leaf extract of Salacia senegalensis Lam (Dc) in albino mice infected with chloroquine-sensitive Plasmodium berghei (NK65). Int J Ethnopharmacol 1(1):002–006

    Google Scholar 

  7. Aloko S, Bello OM (2019) A review on Blighia Sapida K.D. Koenig (syn. Cupania sapida Voigt.): its economic importance, phytochemistry and pharmacological activity: channelling these claims for the present and future. J Ethnopharmacol. https://doi.org/10.1016/j.jep.2019.01.017

    Article  Google Scholar 

  8. Antwi S, Martey ONR, Donkor K, Nii Ayiterg OLK (2009) Antidiarrhoeal activity of Blighia sapida (Sapindaceae) in rats and mice. J Pharmacol Toxicol 4:117–125

    Article  Google Scholar 

  9. Ara A, Reddy SK, Reddy CS (2009) Hepatoprotective activity of Cardiospermum helicacabum stem extract in carbon tetrachloride-induced hepatotoxicity in Wister rats. Int J Pharm Sci Nanotechnol 2(1):487–492

    Google Scholar 

  10. Bekono BD, Ntie-Kang F, Onguéné PA, Lifongo LL, Sippl W, Fester K, Owono LCO (2020) The potential of anti-malarial compounds derived from African medicinal plants: a review of pharmacological evaluations from 2013 to 2019. Malar J 19:183. https://doi.org/10.1186/s12936-020-03231-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bihonegn T, Giday M, Yimer G, Animut A, Sisay M (2019) Antimalarial activity of hydromethanolic extract and its solvent fractions of Vernonia amygdalina leaves in mice infected with Plasmodium berghei. SAGE Open Med 7:2050312119849766. https://doi.org/10.1177/2050312119849766

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dawaki S, Al-Mekhlafi HM, Ithoi I, Ibrahim J, Atroosh WM, Abdulsalam AM, Elyana FN, Adamu AU, Yelwa SI, Ahmed A, Al-Areeqi MA, Subramaniam LR, Nasr NR, Lau Y-L (2016) Is Nigeria winning the battle against malaria? Prevalence, risk factors and KAP assessment among Hausa communities in Kano State. Malar J 15:351. https://doi.org/10.1186/s12936-016-1394-3

    Article  PubMed  PubMed Central  Google Scholar 

  13. Doumas BT, Watson WA, Biggs HG (1971) Albumin standards and measurement of serum albumin with bromocresol green. Clin Chim Acta 31:87–92

    Article  CAS  Google Scholar 

  14. Drury RAB, Wallington EA (1973) Carleton’s histological techniques, 4th edn. Oxford University Press, Oxford, p 58

    Google Scholar 

  15. Ekué MRM, Sinsin B, Eyog-Matig O, Finkeldey R (2010) Uses, traditional management, perception of variation and preferences in ackee (Blighia sapida K.D. Koenig) fruit traits in Benin: implications for domestication and conservation. J Ethnobiol Ethnomed 6:12

    Article  Google Scholar 

  16. Ezeonu CS, Ejikeme CM (2016) Qualitative and quantitative determination of phytochemical contents of indigenous Nigerian softwoods. New J Sci. https://doi.org/10.1155/2016/5601327

    Article  Google Scholar 

  17. Farhana A, Lappin SL (2020) Biochemistry, lactate dehydrogenase. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2022 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557536/

  18. Guerra RA, Crespo J, López MR, Iruzubieta P, Casals MG, Lalana GM, Lavin B, Morales RM (2021) Measurement and clinical usefulness of bilirubin in liver disease. Adv Lab Med 2(3):352–361. https://doi.org/10.1515/almed-2021-0047

    Article  Google Scholar 

  19. Kazeem MI, Raimi OG, Balogun RM, Ogundajo AI (2013) Comparative study on the α-amylase and α-glucosidase inhibitory potential of different extracts of Blighia sapida Koenig. Am J Res Comm 1(7):178–192

    Google Scholar 

  20. Keita S, Wélé M, Cisse C, Diarra N, Kirkman L, Baba-Moussa L (2018) Antibacterial and antiplasmodial activities of tannins extracted from Zizyphus mauritiana in Mali. Int J Biochem Res Rev 24(2):1–8

    Article  Google Scholar 

  21. Levitt DG, Levitt MD (2016) Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. International J Gen Med 9:229–255. https://doi.org/10.2147/IJGM.S102819

    Article  CAS  Google Scholar 

  22. Mboso OE, Odey MO, Uboh FE, Essien NM, Chidinma OO, Eyong EU (2014) Erythropoietic effects of Eremomastax polysperma leaf extracts on female prepubertal and pubertal Wistar Rats. Br J Pharm Res 4(15):1833–1839

    Article  Google Scholar 

  23. McGill MR (2016) The past and present of serum aminotransferases and the future of liver injury biomarkers. EXCLI J 15:817–828. https://doi.org/10.17179/excli2016-800

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ntie-Kang F, Onguéné PA, Lifongo LL, Ndom JC, Sippl W, Mbaze LM (2014) The potential of anti-malarial compounds derived from African medicinal plants, part II: a pharmacological evaluation of non-alkaloids and non-terpenoids. Malar J 13:81

    Article  Google Scholar 

  25. Olaniyi TD, Awodugba TM (2021) Adetutu A (2021) Ethnobotanical survey and evaluation of anti-Salmonella potentials of commonly used plants for typhoid treatment in Ogbomoso, Oyo state Nigeria. J Complement Altern Med Res 15(1):1–15

    Article  Google Scholar 

  26. Olayinka JN, Ozolua RI, Akhigbemen AM (2021) Phytochemical screening of aqueous leaf extract of Blighia sapida K.D. Koenig (Sapindaceae) and its analgesic property in mice. J Ethnopharmacol 273:113977. https://doi.org/10.1016/j.jep.2021.113977

    Article  CAS  PubMed  Google Scholar 

  27. Ologundudu FA, Obimakinde ET, Osunyemi OS, Akinnifesi OJ (2015) Antimicrobial activity and phytochemical screening of leaf and bark of Blighia sapida. J Genet Cell Biol 2(1):36–43

    Google Scholar 

  28. Onguene PA, Ntie-Kang F, Lifongo LL, Ndom JC, Sippl W, Mbaze LMA (2013) The potential of anti-malarial compounds derived from African medicinal plants. Part I: a pharmacological evaluation of alkaloids and terpenoids. Malar J 12(1):449. https://doi.org/10.1186/1475-2875-12-449

    Article  CAS  Google Scholar 

  29. Oribayo OO, Owolabi MA, Ukpo GE, Shode FO (2018) Antioxidant activity of some Nigerian medicinal plants used in malaria treatment. Trop J Nat Prod Res 2(1):18–22

    Article  CAS  Google Scholar 

  30. Otegbade OO, Ojo JA, Adefokun DI, Abiodun OO, Thomas BN, Ojurongbe O (2017) Ethanol extract of Blighia sapida stem bark show remarkable prophylactic activity in experimental Plasmodium berghei–infected mice. Drug Target Insights 11:1177392817728725. https://doi.org/10.1177/1177392817728725

    Article  PubMed  PubMed Central  Google Scholar 

  31. Owolabi OA, James DB, Ibrahim AB, Folorunsho OF, Bwalla I, Akanta F (2010) Changes in lipid profile of aqueous and ethanolic extracts of Blighia sapida in rats. Asian J Med Sci 2(4):177–180

    Google Scholar 

  32. Ozawa S, Shankar R, Leopold C, Orubu S (2019) Access to medicines through health systems in low- and middle-income countries. Health Policy Plan 34:iii1–iii3. https://doi.org/10.1093/heapol/czz119

    Article  PubMed  PubMed Central  Google Scholar 

  33. Peters W, Robinson BL (1999) In: Zak O, Sande M (eds) Handbook of Animal Models of Infection, pp 757–773. Academic, London

  34. Saifi MA, Beg T, Harrath AH, Altayalan FSH, Quraishy SA (2013) Antimalarial drugs: mode of action and status of resistance. Afr J Pharm Pharmacol 7(5):148–156. https://doi.org/10.5897/AJPPX12.015

    Article  Google Scholar 

  35. Santhosh-Kumar CN, Shridhar NB, Sanganal JS, Ambika D (2013) Safety evaluation of Sapindus laurifolius leaf extract in Wistar rats. Vet World 6(11):884–888

    Article  Google Scholar 

  36. Shaikh JR, Patil MK (2020) Qualitative tests for preliminary phytochemical screening: an overview. Int J Chem Stud 8(2):603–608. https://doi.org/10.22271/chemi.2020.v8.i2i.8834

    Article  CAS  Google Scholar 

  37. Shibeshi MA, Kifle ZD, Atnafie SA (2020) Antimalarial drug resistance and novel targets for antimalarial drug discovery. Infect Drug Resist 13:4047–4060. https://doi.org/10.2147/IDR.S279433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Singh A, Bhat TK, Sharma OP (2011) Clinical biochemistry of hepatotoxicity. J Toxicol Clin Toxicol S 4:001. https://doi.org/10.4172/2161-0495.S4-001

    Article  Google Scholar 

  39. Tarkang PA, Okalebo FA, Ayong LS, Agbor GA, Guantai AN (2014) Antimalarial activity of polyherbal product (Nefang) during early and established plasmodium infection in rodent models. Malar J 13:456

    Article  Google Scholar 

  40. Tietz NW (1995) Clinical guide to laboratory tests, 3rd edn. W.B Saunders Company, Philadelphia

    Google Scholar 

  41. Tseha ST (2021) Plasmodium species and drug resistance. In: Tyagi RK (ed) Plasmodium species and drug resistance. IntechOpen, London. https://doi.org/10.5772/intechopen.98344

    Chapter  Google Scholar 

  42. Ubulom PME, Imandeh GN, Ettebong EO, Udobi CE (2012) Potential larvicidal properties of Blighia sapida leaf extracts against larvae of An. gambiae, Cu. quinquefasciatus and Ae. Aegypti. Br J Pharm Res 2(4):259–268

    Article  Google Scholar 

  43. Ubulom PME, Udobi CE, Akpabio EI, Eshiet U (2013) Antimicrobial activities of leaf and stem bark extracts of Blighia sapida. J Plant Stud 2(2):47–52

    Google Scholar 

  44. Viriyavejakul P, Khachonsaksumet V, Punsawad C (2014) Liver changes in severe Plasmodium falciparum malaria: histopathology, apoptosis and nuclear factor kappa B expression. Malar J 13(1):106. https://doi.org/10.1186/1475-2875-13-106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. W.H.O. (2021) World malaria report 2021. Global Malaria Programme, World Health Organization, Geneva, Switzerland, pp 22–26.

  46. White NJ (2018) Anaemia and malaria. Malar J 17:371. https://doi.org/10.1186/s12936-018-2509-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The author did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

TDO conceptualized the project, carried out the experiments, analysed the data and wrote the manuscript. The author read and approved the final manuscript.

Corresponding author

Correspondence to Temitope Deborah Olaniyi.

Ethics declarations

Ethics approval and consent to participate

Not available. However, international guidelines for handling animals were strictly adhered to, according to The Basel Declaration issued on 30th November, 2010.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Olaniyi, T.D. Antiplasmodial evaluation of aqueous extract of Blighia sapida K.D. Koenig leaves in Plasmodium berghei (NK65)-infected mice. Beni-Suef Univ J Basic Appl Sci 11, 120 (2022). https://doi.org/10.1186/s43088-022-00301-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s43088-022-00301-4

Keywords

  • Blighia sapida
  • Plasmodium berghei
  • Malaria
  • Chemosuppression
  • Antiplasmodial