Gorgani L, Mohammadi M, Najafpour GD, Nikzad M (2017) Piperine—the bioactive compound of black pepper: from isolation to medicinal formulations. Compr Rev Food Sci Food Saf 16:124–140. https://doi.org/10.1111/1541-4337.12246
Article
CAS
PubMed
Google Scholar
Aziz NS, Sofian-Seng N, Mohd Razali NS, Lim SJ, Mustapha WA (2019) A review on conventional and biotechnological approaches in white pepper production. J Sci Food Agric 99:2665–2676. https://doi.org/10.1002/jsfa.9481
Article
CAS
PubMed
Google Scholar
Buckle KA, Rathnawathie M, Brophy JJ (2007) Compositional differences of black, green and white pepper (Piper nigrum L.) oil from three cultivars. Int J Food Sci Technol 20:599–613. https://doi.org/10.1111/j.1365-2621.1985.tb01819.x
Article
Google Scholar
Takooree H, Aumeeruddy MZ, Rengasamy KRR, Venugopala KN, Jeewon R, Zengin G, Mahomoodally MF (2019) A systematic review on black pepper (Piper nigrum L.): from folk uses to pharmacological applications. Crit Rev Food Sci Nutr 59:S210–S243. https://doi.org/10.1080/10408398.2019.1565489
Article
CAS
PubMed
Google Scholar
Tiwari A, Mahadik KR, Gabhe SY (2020) Piperine: a comprehensive review of methods of isolation, purification, and biological properties. Med Drug Discov 7:100027. https://doi.org/10.1016/j.medidd.2020.100027
Article
Google Scholar
Derosa G, Maffioli P, Sahebkar A (2016) Piperine and its role in chronic diseases. pp 173–184. https://doi.org/10.1007/978-3-319-41334-1_8
Meghwal M, Goswami TK (2013) Piper nigrum and piperine: an update. Phyther Res 27:1121–1130. https://doi.org/10.1002/ptr.4972
Article
CAS
Google Scholar
Singletary K (2010) Black pepper. Nutr Today 45: 43–47. https://doi.org/10.1097/NT.0b013e3181cb4539
Haq IU, Imran M, Nadeem M, Tufail T, Gondal TA, Mubarak MS (2020) Piperine: a review of its biological effects. Phyther Res. https://doi.org/10.1002/ptr.6855
Article
Google Scholar
Kakarala M, Dubey SK, Tarnowski M, Cheng C, Liyanage S, Strawder T, Tazi K, Sen A, Djuric Z, Brenner DE (2010) Ultra-low flow liquid chromatography assay with ultraviolet (UV) detection for piperine quantitation in human plasma. J Agric Food Chem 58:6594–6599. https://doi.org/10.1021/jf100657r
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozukue N, Park M-SS, Choi S-HH, Lee S-UU, Ohnishi-Kameyama M, Levin CE, Friedman M (2007) Kinetics of light-induced cis-trans isomerization of four piperines and their levels in ground black peppers as determined by HPLC and LC/MS. J Agric Food Chem 55:7131–7139. https://doi.org/10.1021/jf070831p
Article
CAS
PubMed
Google Scholar
Panahi Y, Ghanei M, Hajhashemi A, Sahebkar A (2016) Effects of curcuminoids-piperine combination on systemic oxidative stress, clinical symptoms and quality of life in subjects with chronic pulmonary complications due to sulfur mustard: a randomized controlled trial. J Diet Suppl 13:93–105. https://doi.org/10.3109/19390211.2014.952865
Article
CAS
PubMed
Google Scholar
Panahi Y, Hosseini MS, Khalili N, Naimi E, Majeed M, Sahebkar A (2015) Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: a randomized controlled trial and an updated meta-analysis. Clin Nutr 34:1101–1108. https://doi.org/10.1016/j.clnu.2014.12.019
Article
CAS
PubMed
Google Scholar
Panahi Y, Khalili N, Hosseini MS, Abbasinazari M, Sahebkar A (2014) Lipid-modifying effects of adjunctive therapy with curcuminoids–piperine combination in patients with metabolic syndrome: results of a randomized controlled trial. Complement Ther Med 22:851–857. https://doi.org/10.1016/j.ctim.2014.07.006
Article
PubMed
Google Scholar
Shafiee A, Hoormand M, Shahidi-Dadras M, Abadi A (2018) The effect of topical piperine combined with narrowband UVB on vitiligo treatment: a clinical trial study. Phyther Res 32:1812–1817. https://doi.org/10.1002/ptr.6116
Article
CAS
Google Scholar
Han ES, goleman, daniel; boyatzis, Richard; Mckee A (2019) 済無No Title No Title. J Chem Inf Model 53: 1689–1699
Schöffmann A, Wimmer L, Goldmann D, Khom S, Hintersteiner J, Baburin I, Schwarz T, Hintersteininger M, Pakfeifer P, Oufir M, Hamburger M, Erker T, Ecker GF, Mihovilovic MD, Hering S (2014) Efficient modulation of γ-aminobutyric acid type a receptors by piperine derivatives. J Med Chem 57:5602–5619. https://doi.org/10.1021/jm5002277
Article
CAS
PubMed
PubMed Central
Google Scholar
Koul S, Koul JL, Taneja SC, Dhar KL, Jamwal DS, Singh K, Reen RK, Singh J (2000) Structure-activity relationship of piperine and its synthetic analogues for their inhibitory potentials of rat hepatic microsomal constitutive and inducible cytochrome P450 activities. Bioorganic Med Chem 8:251–268. https://doi.org/10.1016/S0968-0896(99)00273-4
Article
CAS
Google Scholar
Sattarinezhad E, Bordbar AK, Fani N (2015) Piperine derivatives as potential inhibitors of Survivin: an in silico molecular docking. Comput Biol Med 63:219–227. https://doi.org/10.1016/j.compbiomed.2015.05.016
Article
CAS
PubMed
Google Scholar
Correa EA, Högestätt ED, Sterner O, Echeverri F, Zygmunt PM (2010) In vitro TRPV1 activity of piperine derived amides. Bioorganic Med Chem 18:3299–3306. https://doi.org/10.1016/j.bmc.2010.03.013
Article
CAS
Google Scholar
Dong Y, Yin Y, Vu S, Yang F, Yarov-Yarovoy V, Tian Y, Zheng J (2019) A distinct structural mechanism underlies TRPV1 activation by piperine. Biochem Biophys Res Commun 516:365–372. https://doi.org/10.1016/j.bbrc.2019.06.039
Article
CAS
PubMed
PubMed Central
Google Scholar
Eigenmann DE, Dürig C, Jähne EA, Smieško M, Culot M, Gosselet F, Cecchelli R, Cederberg Helms HC, Brodin B, Wimmer L, Mihovilovic MD, Hamburger M, Oufir M (2016) In vitro blood–brain barrier permeability predictions for GABAA receptor modulating piperine analogs. Eur J Pharm Biopharm 103:118–126. https://doi.org/10.1016/j.ejpb.2016.03.029
Article
CAS
PubMed
Google Scholar
Wimmer L, Schönbauer D, Pakfeifer P, Schöffmann A, Khom S, Hering S, Mihovilovic MD (2015) Developing piperine towards TRPV1 and GABAA receptor ligands - synthesis of piperine analogs via Heck-coupling of conjugated dienes. Org Biomol Chem 13:990–994. https://doi.org/10.1039/c4ob02242d
Article
CAS
PubMed
Google Scholar
Zabela V, Hettich T, Schlotterbeck G, Wimmer L, Mihovilovic MD, Guillet F, Bouaita B, Shevchenko B, Hamburger M, Oufir M (2018) GABAA receptor activity modulating piperine analogs: In vitro metabolic stability, metabolite identification, CYP450 reaction phenotyping, and protein binding. J Chromatogr B Anal Technol Biomed Life Sci 1072:379–389. https://doi.org/10.1016/j.jchromb.2017.11.036
Article
CAS
Google Scholar
Shingate PN, Dongre PP, Kannur DM (2013) New method development for extraction and isolation of piperine from black pepper. Int J Pharm Sci Res 4:3165–3170
Google Scholar
Olalere OA, Abdurahman HN, Yunus RM, Alara OR, Thraisingam J (2017) Comparative study of pulsed microwave and hydrodistillation extraction of piperine oil from black pepper. IIUM Eng J 18:87–93. Doi:https://doi.org/10.31436/iiumej.v18i2.802
Subramanian R, Subbramaniyan P, Noorul Ameen J, Raj V (2016) Double bypasses soxhlet apparatus for extraction of piperine from Piper nigrum. Arab J Chem 9:S537–S540. https://doi.org/10.1016/j.arabjc.2011.06.022
Article
CAS
Google Scholar
Raman G, Gaikar VG (2002) Extraction of piperine from Piper nigrum (black pepper) by hydrotropic solubilization. Ind Eng Chem Res 41:2966–2976. https://doi.org/10.1021/ie0107845
Article
CAS
Google Scholar
Yu Y, Hu S, Fu D, Zhang X, Liu H, Xu B, Huang M (2020) Surfactant-assisted enzymatic extraction of piperine from Piper nigrum L. Int J Food Prop 23:52–62. https://doi.org/10.1080/10942912.2019.1707221
Article
CAS
Google Scholar
Raman G, Gaikar VG (2002) Microwave-assisted extraction of piperine from Piper nigrum. Ind Eng Chem Res 41:2521–2528. https://doi.org/10.1021/ie010359b
Article
CAS
Google Scholar
Ren Q, Zhao S, Ren C, Ma Z (2018) Astragalus polysaccharide alleviates LPS-induced inflammation injury by regulating miR-127 in H9c2 cardiomyoblasts. Int J Immunopathol Pharmacol 31:1–11. https://doi.org/10.1177/2058738418759180
Article
CAS
Google Scholar
Ren T, Wang Q, Li C, Yang M, Zuo Z (2018) Efficient brain uptake of piperine and its pharmacokinetics characterization after oral administration. Xenobiotica 48:1249–1257. https://doi.org/10.1080/00498254.2017.1405293
Article
CAS
PubMed
Google Scholar
Bajad S, Singla AK, Bedi KL (2002) Liquid chromatographic method for determination of piperine in rat plasma: application to pharmacokinetics. J Chromatogr B Anal Technol Biomed Life Sci 776:245–249. https://doi.org/10.1016/S1570-0232(02)00352-5
Article
CAS
Google Scholar
Ramesh B, Rao Vadaparthi PR, Sukumar G, Manjula N, Suresh Babu K, Sita Devi P (2016) LC-HRMS determination of piperine on rat dried blood spots: a pharmacokinetic study. J Pharm Anal 6:18–23. https://doi.org/10.1016/j.jpha.2015.07.002
Article
PubMed
Google Scholar
Han HK (2011) The effects of black pepper on the intestinal absorption and hepatic metabolism of drugs. Expert Opin Drug Metab Toxicol 7:721–729. https://doi.org/10.1517/17425255.2011.570332
Article
CAS
PubMed
Google Scholar
Izgelov D, Domb AJ, Hoffman A (2020) The effect of piperine on oral absorption of cannabidiol following acute vs. chronic administration. Eur J Pharm Sci 148:13–16. https://doi.org/10.1016/j.ejps.2020.105313
Article
CAS
Google Scholar
Parveen B, Pillai KK, Tamboli ET, Ahmad S (2015) Effect of piperine on pharmacokinetics of sodium valproate in plasma samples of rats using gas chromatography-mass spectrometry method. J Pharm Bioallied Sci 7:317–320. https://doi.org/10.4103/0975-7406.168036
Article
CAS
PubMed
PubMed Central
Google Scholar
Junsaeng D, Anukunwithaya T, Songvut P, Sritularak B, Likhitwitayawuid K, Khemawoot P (2019) Comparative pharmacokinetics of oxyresveratrol alone and in combination with piperine as a bioenhancer in rats. BMC Complement Altern Med 19:1–10. https://doi.org/10.1186/s12906-019-2653-y
Article
CAS
Google Scholar
Zafar F, Jahan N, Khalil-Ur-Rahman, Bhatti HN (2019) Increased oral bioavailability of piperine from an optimized piper nigrum nanosuspension. Planta Med 85:249–257. https://doi.org/10.1055/a-0759-2208
Zhu P, Qian J, Xu Z, Meng C, Liu J, Shan W, Zhu W, Wang Y, Yang Y, Zhang W, Zhang Y, Ling Y (2020) Piperlonguminine and piperine analogues as TrxR inhibitors that promote ROS and autophagy and regulate p38 and Akt/mTOR signaling. J Nat Prod 83:3041–3049. https://doi.org/10.1021/acs.jnatprod.0c00599
Article
CAS
PubMed
Google Scholar
Zhu Y, Yu J, Zhou G, Gu Z, Adu-Frimpong M, Deng W, Yu J, Xu X (2020) Piperine fast disintegrating tablets comprising sustained-release matrix pellets with enhanced bioavailability: formulation, in vitro and in vivo evaluation. Pharm Dev Technol 25:617–624. https://doi.org/10.1080/10837450.2020.1725892
Article
CAS
PubMed
Google Scholar
Badmaev V, Majeed M, Norkus EP (1999) Piperine, an alkaloid derived from black pepper increases serum response of beta-carotene during 14-days of oral beta-carotene supplementation. Nutr Res 19:381–388. https://doi.org/10.1016/S0271-5317(99)00007-X
Article
CAS
Google Scholar
Bi X, Yuan Z, Qu B, Zhou H, Liu Z, Xie Y (2019) Piperine enhances the bioavailability of silybin via inhibition of efflux transporters BCRP and MRP2. Phytomedicine 54:98–108. https://doi.org/10.1016/j.phymed.2018.09.217
Article
CAS
PubMed
Google Scholar
Izgelov D, Cherniakov I, Aldouby Bier G, Domb AJ, Hoffman A (2018) The effect of piperine pro-nano lipospheres on direct intestinal phase II metabolism: the raloxifene paradigm of enhanced oral bioavailability. Mol Pharm 15:1548–1555. https://doi.org/10.1021/acs.molpharmaceut.7b01090
Article
CAS
PubMed
Google Scholar
Bolat ZB, Islek Z, Demir BN, Yilmaz EN, Sahin F, Ucisik MH (2020) Curcumin- and piperine-loaded emulsomes as combinational treatment approach enhance the anticancer activity of curcumin on HCT116 colorectal cancer model. Front Bioeng Biotechnol 8:1–21. https://doi.org/10.3389/fbioe.2020.00050
Article
Google Scholar
Zeng X, Cai D, Zeng Q, Chen Z, Zhong G, Zhuo J, Gan H, Huang X, Zhao Z, Yao N, Huang D, Zhang C, Sun D, Chen Y (2017) Selective reduction in the expression of UGTs and SULTs, a novel mechanism by which piperine enhances the bioavailability of curcumin in rat. Biopharm Drug Dispos 38:3–19. https://doi.org/10.1002/bdd.2049
Article
CAS
PubMed
Google Scholar
Fernández-Lázaro D, Mielgo-Ayuso J, Martínez AC, Seco-Calvo J (2020) Iron and physical activity: bioavailability enhancers, properties of black pepper (bioperine®) and potential applications. Nutrients 12:1–12. https://doi.org/10.3390/nu12061886
Article
CAS
Google Scholar
Lambert JD, Hong J, Kim DH, Mishin VM, Yang CS (2004) Piperine enhances the bioavailability of the tea polyphenol (−)-epigallocatechin-3-gallate in mice. J Nutr 134:1948–1952. https://doi.org/10.1093/jn/134.8.1948
Article
CAS
PubMed
Google Scholar
Burande AS, Viswanadh MK, Jha A, Mehata AK, Shaik A, Agrawal N, Poddar S, Mahto SK, Muthu MS (2020) EGFR targeted paclitaxel and piperine co-loaded liposomes for the treatment of triple negative breast cancer. AAPS PharmSciTech 21:1–12. https://doi.org/10.1208/s12249-020-01671-7
Article
CAS
Google Scholar
Syed SB, Arya H, Fu IH, Yeh TK, Periyasamy L, Hsieh HP, Coumar MS (2017) Targeting P-glycoprotein: investigation of piperine analogs for overcoming drug resistance in cancer. Sci Rep 7:1–18. https://doi.org/10.1038/s41598-017-08062-2
Article
CAS
Google Scholar
Selvaraj J (2020) Molecular docking analysis of piperine with CDK2, CDK4, Cyclin D and Cyclin T proteins. Bioinformation 16:359–362. https://doi.org/10.6026/97320630016359
Article
PubMed
PubMed Central
Google Scholar
Grinevicius VMAS, Andrade KS, Mota NSRS, Bretanha LC, Felipe KB, Ferreira SRS, Pedrosa RC (2019) CDK2 and Bcl-xL inhibitory mechanisms by docking simulations and anti-tumor activity from piperine enriched supercritical extract. Food Chem Toxicol 132:110644. https://doi.org/10.1016/j.fct.2019.110644
Article
CAS
PubMed
Google Scholar
Bhardwaj RK, Glaeser H, Becquemont L, Klotz U, Gupta SK, Fromm MF (2002) Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J Pharmacol Exp Ther 302:645–650. https://doi.org/10.1124/jpet.102.034728
Article
CAS
PubMed
Google Scholar
Choi Y, Yu A-M (2014) ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des 20:1–34. https://doi.org/10.2174/138161282005140214165212
Article
CAS
Google Scholar
Gameiro M, Silva R, Rocha-Pereira C, Carmo H, Carvalho F, Bastos MDL, Remião F (2017) Cellular models and in vitro assays for the screening of modulators of P-gp, MRP1 and BCRP. Molecules 22:4–6. https://doi.org/10.3390/molecules22040600
Article
CAS
Google Scholar
Li S, Lei Y, Jia Y, Li N, Wink M, Ma Y (2011) Piperine, a piperidine alkaloid from Piper nigrum re-sensitizes P-gp, MRP1 and BCRP dependent multidrug resistant cancer cells. Phytomedicine 19:83–87. https://doi.org/10.1016/j.phymed.2011.06.031
Article
CAS
PubMed
Google Scholar
Zeng Y, Yang Y (2018) Piperine depresses the migration progression via downregulating the Akt/mTOR/MMP-9 signaling pathway in DU145 cells. Mol Med Rep 17:6363–6370. https://doi.org/10.3892/mmr.2018.8653
Article
CAS
PubMed
PubMed Central
Google Scholar
Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13:1016–1023. https://doi.org/10.1038/ncb2329
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng X, Yang T, Liu G, Liu H, Peng Y, He L (2018) Piperine ameliorated lupus nephritis by targeting AMPK-mediated activation of NLRP3 inflammasome. Int Immunopharmacol 65:448–457. https://doi.org/10.1016/j.intimp.2018.10.025
Article
CAS
PubMed
Google Scholar
George K, Thomas NS, Malathi R (2019) Piperine blocks voltage gated K + current and inhibits proliferation in androgen sensitive and insensitive human prostate cancer cell lines. Arch Biochem Biophys 667:36–48. https://doi.org/10.1016/j.abb.2019.04.007
Article
CAS
PubMed
Google Scholar
Sadri Nahand J, Bokharaei-Salim F, Salmaninejad A, Nesaei A, Mohajeri F, Moshtzan A, Tabibzadeh A, Karimzadeh M, Moghoofei M, Marjani A, Yaghoubi S, Keyvani H (2019) microRNAs: key players in virus-associated hepatocellular carcinoma. J Cell Physiol 234:12188–12225. https://doi.org/10.1002/jcp.27956
Article
CAS
PubMed
Google Scholar
Yang R, Gao N, Chang Q, Meng X, Wang W (2019) The role of IDO, IL-10, and TGF-β in the HCV-associated chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. J Med Virol 91:265–271. https://doi.org/10.1002/jmv.25083
Article
CAS
PubMed
Google Scholar
Huang H (2018) Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: REcent advances. Sensors (Switzerland) 18:5–7. https://doi.org/10.3390/s18103249
Article
CAS
Google Scholar
Hwang YP, Yun HJ, Kim HG, Han EH, Choi JH, Chung YC, Jeong HG (2011) Suppression of phorbol-12-myristate-13-acetate-induced tumor cell invasion by piperine via the inhibition of PKCα/ERK1/2-dependent matrix metalloproteinase-9 expression. Toxicol Lett 203:9–19. https://doi.org/10.1016/j.toxlet.2011.02.013
Article
CAS
PubMed
Google Scholar
Janani C, Ranjitha Kumari BD (2015) PPAR gamma gene: a review. Diabetes Metab Syndr Clin Res Rev 9:46–50. https://doi.org/10.1016/j.dsx.2014.09.015
Article
CAS
Google Scholar
Park UH, Jeong HS, Jo EY, Park T, Yoon SK, Kim EJ, Jeong JC, Um SJ (2012) Piperine, a component of black pepper, inhibits adipogenesis by antagonizing PPARγ activity in 3T3-L1 cells. J Agric Food Chem 60:3853–3860. https://doi.org/10.1021/jf204514a
Article
CAS
PubMed
Google Scholar
Pradeep CR, Kuttan G (2004) Piperine is a potent inhibitor of nuclear factor-κB (NF-κB), c-Fos, CREB, ATF-2 and proinflammatory cytokine gene expression in B16F–10 melanoma cells. Int Immunopharmacol 4:1795–1803. https://doi.org/10.1016/j.intimp.2004.08.005
Article
CAS
PubMed
Google Scholar
Ren C, Liang Z (2018) Piperine alleviates lipopolysaccharide-induced inflammatory injury by down-regulating microRNA-127 in murine chondrogenic ATDC5 cells. Biomed Pharmacother 103:947–954. https://doi.org/10.1016/j.biopha.2018.04.108
Article
CAS
PubMed
Google Scholar
Arend RC, Londoño-Joshi AI, Straughn JM, Buchsbaum DJ (2013) The Wnt/β-catenin pathway in ovarian cancer: a review. Gynecol Oncol 131:772–779. https://doi.org/10.1016/j.ygyno.2013.09.034
Article
CAS
PubMed
Google Scholar
Krishnamurthy N, Kurzrock R (2018) Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treat Rev 62:50–60. https://doi.org/10.1016/j.ctrv.2017.11.002
Article
CAS
PubMed
Google Scholar
Vilchez V, Turcios L, Marti F, Gedaly R (2016) Targeting Wnt/β-catenin pathway in hepatocellular carcinoma treatment. World J Gastroenterol 22:823–832. https://doi.org/10.3748/wjg.v22.i2.823
Article
CAS
PubMed
PubMed Central
Google Scholar
de Almeida GC, Oliveira LFS, Predes D, Fokoue HH, Kuster RM, Oliveira FL, Mendes FA, Abreu JG (2020) Piperine suppresses the Wnt/β-catenin pathway and has anti-cancer effects on colorectal cancer cells. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-68574-2
Article
CAS
Google Scholar
Si L, Yang R, Lin R, Yang S (2018) Piperine functions as a tumor suppressor for human ovarian tumor growth via activation of JNK/p38 MAPK-mediated intrinsic apoptotic pathway. Biosci Rep. https://doi.org/10.1042/BSR20180503
Tawani A, Amanullah A, Mishra A, Kumar A (2016) Evidences for Piperine inhibiting cancer by targeting human G-quadruplex DNA sequences. Sci Rep 6:1–12. https://doi.org/10.1038/srep39239
Article
CAS
Google Scholar
International A, Reviewed P, Tripathi AK, Ali S, Mishra DP (2013) G- Journal of Environmental Science and Technology attenuated antioxidant property of UV-B irradiated piperine in ischemia-reperfusion injury in SD rat 1: 29–36
Vaibhav K, Shrivastava P, Javed H, Khan A, Ahmed ME, Tabassum R, Khan MM, Khuwaja G, Islam F, Saeed Siddiqui M, Safhi MM, Islam F (2012) Piperine suppresses cerebral ischemia-reperfusion-induced inflammation through the repression of COX-2, NOS-2, and NF-κB in middle cerebral artery occlusion rat model. Mol Cell Biochem 367:73–84. https://doi.org/10.1007/s11010-012-1321-z
Article
CAS
PubMed
Google Scholar
Verma AK, Khan E, Mishra SK, Jain N, Kumar A (2019) Piperine modulates protein mediated toxicity in fragile X-associated tremor/ataxia syndrome through interacting expanded CGG repeat (r(CGG)exp) RNA. ACS Chem Neurosci 10:3778–3788. https://doi.org/10.1021/acschemneuro.9b00282
Article
CAS
PubMed
Google Scholar
Aumeeruddy MZ, Mahomoodally MF (2019) Combating breast cancer using combination therapy with 3 phytochemicals: piperine, sulforaphane, and thymoquinone. Cancer 125:1600–1611. https://doi.org/10.1002/cncr.32022
Article
PubMed
Google Scholar
Khamis AAA, Ali EMM, El-Moneim MAA, Abd-Alhaseeb MM, El-Magd MA, Salim EI (2018) Hesperidin, piperine and bee venom synergistically potentiate the anticancer effect of tamoxifen against breast cancer cells. Biomed Pharmacother 105:1335–1343. https://doi.org/10.1016/j.biopha.2018.06.105
Article
CAS
PubMed
Google Scholar
Kanthaiah Original Research Y, Ragini P, Av D, Ch A, Yv K, Kanthaiah Y (2014) Enhancement of paclitaxel and doxorubicin cytotoxicity in breast cancer cell lines in combination with piperine treatment and analysis of expression of autophagy and apoptosis genes. J Med Sci Res 2:62–672
Talib WH (2017) Regressions of breast carcinoma syngraft following treatment with piperine in combination with thymoquinone. Sci Pharm 85:1–11. https://doi.org/10.3390/scipharm85030027
Article
Google Scholar
Kakarala M, Brenner DE, Korkaya H, Cheng C, Tazi K, Ginestier C, Liu S, Dontu G, Wicha MS (2010) Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat 122:777–785. https://doi.org/10.1007/s10549-009-0612-x
Article
CAS
PubMed
Google Scholar
Do MT, Kim HG, Choi JH, Khanal T, Park BH, Tran TP, Jeong TC, Jeong HG (2013) Antitumor efficacy of Piperine in the treatment of human HER2-overexpressing breast cancer cells. Food Chem 141:2591–2599. https://doi.org/10.1016/j.foodchem.2013.04.125
Article
CAS
PubMed
Google Scholar
Fofaria NM, Kim SH, Srivastava SK (2014) Piperine causes G1 phase cell cycle arrest and apoptosis in melanoma cells through checkpoint kinase-1 activation. PLoS ONE 9:1–10. https://doi.org/10.1371/journal.pone.0094298
Article
CAS
Google Scholar
Moorthi C, Kathiresan K (2013) Curcumin-piperine/curcumin-quercetin/curcumin- silibinin dual drug-loaded nanoparticulate combination therapy: a novel approach to target and treat multidrug-resistant cancers. J Med Hypotheses Ideas 7:15–20. https://doi.org/10.1016/j.jmhi.2012.10.005
Article
CAS
Google Scholar
Das S, Bera D, Pal K, Mondal D, Karmakar P, Das S, Dey A (2020) Guar gum micro-vehicle mediated delivery strategy and synergistic activity of thymoquinone and piperine: an in vitro study on bacterial and hepatocellular carcinoma cells. J Drug Deliv Sci Technol 60:101994. https://doi.org/10.1016/j.jddst.2020.101994
Article
CAS
Google Scholar
Tedasen A, Khoka A, Madla S, Sriwiriyajan S, Graidist P (2019) Anticancer effects of piperine-free piper nigrum extract on cholangiocarcinoma cell lines. Pharmacogn Mag 15:S38–S46. https://doi.org/10.4103/pm.pm_288_19
Article
CAS
Google Scholar
Samykutty A, Shetty AV, Dakshinamoorthy G, Bartik MM, Johnson GL, Webb B, Zheng G, Chen A, Kalyanasundaram R, Munirathinam G (2013) Piperine, a bioactive component of pepper spice exerts therapeutic effects on androgen dependent and androgen independent prostate cancer cells. PLoS ONE 8:1–11. https://doi.org/10.1371/journal.pone.0065889
Article
CAS
Google Scholar
Sedeky AS, Khalil IA, Hefnawy A, El-Sherbiny IM (2018) Development of core-shell nanocarrier system for augmenting piperine cytotoxic activity against human brain cancer cell line. Eur J Pharm Sci 118:103–112. https://doi.org/10.1016/j.ejps.2018.03.030
Article
CAS
PubMed
Google Scholar
Yaffe PB, Doucette CD, Walsh M, Hoskin DW (2013) Piperine impairs cell cycle progression and causes reactive oxygen species-dependent apoptosis in rectal cancer cells. Exp Mol Pathol 94:109–114. https://doi.org/10.1016/j.yexmp.2012.10.008
Article
CAS
PubMed
Google Scholar
Nag A, Chowdhury RR (2020) Piperine, an alkaloid of black pepper seeds can effectively inhibit the antiviral enzymes of Dengue and Ebola viruses, an in silico molecular docking study. VirusDisease 31:308–315. https://doi.org/10.1007/s13337-020-00619-6
Article
PubMed
PubMed Central
Google Scholar
Khan IA, Mirza ZM, Kumar A, Verma V, Qazi GN (2006) Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob Agents Chemother 50:810–812. https://doi.org/10.1128/AAC.50.2.810-812.2006
Article
CAS
PubMed
PubMed Central
Google Scholar
Sangwan PL, Koul JL, Koul S, Reddy MV, Thota N, Khan IA, Kumar A, Kalia NP, Qazi GN (2008) Piperine analogs as potent Staphylococcus aureus NorA efflux pump inhibitors. Bioorganic Med Chem 16:9847–9857. https://doi.org/10.1016/j.bmc.2008.09.042
Article
CAS
Google Scholar
Ferreira C, Soares DC, Barreto-Junior CB, Nascimento MT, Freire-De-Lima L, Delorenzi JC, Lima MEF, Atella GC, Folly E, Carvalho TMU, Saraiva EM, Pinto-Da-Silva LH (2011) Leishmanicidal effects of piperine, its derivatives, and analogues on Leishmania amazonensis. Phytochemistry 72:2155–2164. https://doi.org/10.1016/j.phytochem.2011.08.006
Article
CAS
PubMed
Google Scholar
Sahi S, Tewatia P, Ghosal S (2012) Leishmania donovani pteridine reductase 1: Comparative protein modeling and protein-ligand interaction studies of the leishmanicidal constituents isolated from the fruits of Piper longum. J Mol Model 18:5065–5073. https://doi.org/10.1007/s00894-012-1508-y
Article
CAS
PubMed
Google Scholar
Thakre A, Jadhav V, Kazi R, Shelar A, Patil R, Kharat K, Zore G, Karuppayil SM (2020) Oxidative stress induced by piperine leads to apoptosis in Candida albicans. Med Mycol. https://doi.org/10.1093/mmy/myaa058
Article
Google Scholar
de Paula VF, de Barbosa LCA., Demuner AJ, Piló-Veloso D, Picanço MC (2000) Synthesis and insecticidal activity of new amide derivatives of piperine. Pest Manag Sci 56:168–174. https://doi.org/10.1002/(sici)1526-4998(200002)56:2%3c168::aid-ps110%3e3.3.co;2-8
Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB (2003) Years of life lost due to obesity. J Am Med Assoc 289:187–193. https://doi.org/10.1001/jama.289.2.187
Article
Google Scholar
Kushner RF, Roth JL (2003) Assessment of the obese patient. Endocrinol Metab Clin North Am 32:915–933. https://doi.org/10.1016/S0889-8529(03)00068-9
Article
PubMed
Google Scholar
Han TS, Sattar N, Lean M (2006) ABC of obesity: assessment of obesity and its clinical implications. Br Med J 333:695–698
Article
Google Scholar
Foster-Schubert KE, Cummings DE (2006) Emerging therapeutic strategies for obesity. Endocr Rev 27:779–793. https://doi.org/10.1210/er.2006-0041
Article
PubMed
Google Scholar
Lu D, Willard D, Patel IR, Kadwell S, Overton L, Kost T, Luther M, Chen W, Woychik RP, Wilkison WO, Cone RD (1994) Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature. https://doi.org/10.1038/371799a0
Article
PubMed
Google Scholar
Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671. https://doi.org/10.1038/35007534
Article
CAS
PubMed
Google Scholar
Shah SS, Shah GB, Singh SD, Gohil PV, Chauhan K, Shah KA, Chorawala M (2011) Effect of piperine in the regulation of obesity-induced dyslipidemia in high-fat diet rats. Indian J Pharmacol 43:296–299. https://doi.org/10.4103/0253-7613.81516
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi S, Choi Y, Choi Y, Kim S, Jang J, Park T (2013) Piperine reverses high fat diet-induced hepatic steatosis and insulin resistance in mice. Food Chem 141:3627–3635. https://doi.org/10.1016/j.foodchem.2013.06.028
Article
CAS
PubMed
Google Scholar
Diwan V, Poudyal H, Brown L (2013) Piperine attenuates cardiovascular, liver and metabolic changes in high carbohydrate. High Fat-Fed Rats Cell Biochem Biophys 67:297–304. https://doi.org/10.1007/s12013-011-9306-1
Article
CAS
PubMed
Google Scholar
Chonpathompikunlert P, Wattanathorn J, Muchimapura S (2010) Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food Chem Toxicol 48:798–802. https://doi.org/10.1016/j.fct.2009.12.009
Article
CAS
PubMed
Google Scholar
Wang C, Cai Z, Wang W, Wei M, Kou D, Li T, Yang Z, Guo H, Le W, Li S (2019) Piperine attenuates cognitive impairment in an experimental mouse model of sporadic Alzheimer’s disease. J Nutr Biochem 70:147–155. https://doi.org/10.1016/j.jnutbio.2019.05.009
Article
CAS
PubMed
Google Scholar
Yang W, Chen Y-H, Liu H, Qu H-D (2015) Neuroprotective effects of piperine on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease mouse model. Int J Mol Med 36:1369–1376. https://doi.org/10.3892/ijmm.2015.2356
Article
CAS
PubMed
Google Scholar
Guo J, Cui Y, Liu Q, Yang Y, Li Y, Weng L, Tang B, Jin P, Li X-J, Yang S, Li S (2018) Piperine ameliorates SCA17 neuropathology by reducing ER stress. Mol Neurodegener 13:4. https://doi.org/10.1186/s13024-018-0236-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh S, Kumar P (2018) Piperine in combination with quercetin halt 6-OHDA induced neurodegeneration in experimental rats: Biochemical and neurochemical evidences. Neurosci Res 133:38–47. https://doi.org/10.1016/j.neures.2017.10.006
Article
CAS
PubMed
Google Scholar
Singh S, Kumar P (2016) Neuroprotective activity of curcumin in combination with piperine against quinolinic acid induced neurodegeneration in rats. Pharmacology 97:151–160. https://doi.org/10.1159/000443896
Article
CAS
PubMed
Google Scholar
Yaribeygi H, Panahi Y, Javadi B, Sahebkar A (2018) The Underlying role of oxidative stress in neurodegeneration: a mechanistic review. CNS Neurol Disord - Drug Targets 17:207–215. https://doi.org/10.2174/1871527317666180425122557
Article
CAS
PubMed
Google Scholar
Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, Dippel D, Eesa M, Fischer U, Hausegger K, Hirsch JA, Shazam Hussain M, Jansen O, Jayaraman MV, Khalessi AA, Kluck BW, Lavine S, Meyers PM, Ramee S, Rüfenacht DA, Schirmer CM, Vorwerk D (2018) Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke 13:612–632. https://doi.org/10.1177/1747493018778713
Article
PubMed
Google Scholar
Wardlaw JM, Murray V, Berge E, Del Zoppo G, Sandercock P, Lindley RL, Cohen G (2012) Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. Lancet 379:2364–2372. https://doi.org/10.1016/S0140-6736(12)60738-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Strimpakos AS, Sharma RA (2008) Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxidants Redox Signal 10:511–545. https://doi.org/10.1089/ars.2007.1769
Article
CAS
Google Scholar
Da Cruz GMP, Felipe CFB, Scorza FA, Da Costa MAC, Tavares AF, Menezes MLF, De Andrade GM, Leal LKAM, Brito GAC, Da Graça Naffah-Mazzacoratti M, Cavalheiro EA, De Barros Viana GS (2013) Piperine decreases pilocarpine-induced convulsions by GABAergic mechanisms. Pharmacol Biochem Behav 104:144–153. https://doi.org/10.1016/j.pbb.2013.01.002
Article
CAS
PubMed
Google Scholar
Kumar Tripathi A, Dwivedi A, Kumar Pal M, Ali S, Singh Ray R, Prasad Mishra D (2014) Involvement of attenuated antioxidant and Bcl2 signalling property in UV-R/ sunlight irradiated piperine treated ischemia/reperfusion rat model. Highlights Free Radicals Antioxidants 4:47–54. https://doi.org/10.5530/fra.2014.1.8
Article
CAS
Google Scholar
Mao QQ, Huang Z, Ip SP, Xian YF, Che CT (2012) Protective effects of piperine against corticosterone-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol 32:531–537. https://doi.org/10.1007/s10571-011-9786-y
Article
CAS
PubMed
Google Scholar
Mao QQ, Huang Z, Zhong XM, Xian YF, Ip SP (2014) Piperine reverses the effects of corticosterone on behavior and hippocampal BDNF expression in mice. Neurochem Int 74:36–41. https://doi.org/10.1016/j.neuint.2014.04.017
Article
CAS
PubMed
Google Scholar
Al-Baghdadi OB, Prater NI, Van Der Schyf CJ, Geldenhuys WJ (2012) Inhibition of monoamine oxidase by derivatives of piperine, an alkaloid from the pepper plant Piper nigrum, for possible use in Parkinson’s disease. Bioorganic Med Chem Lett 22:7183–7188. https://doi.org/10.1016/j.bmcl.2012.09.056
Article
CAS
Google Scholar
de Araújo-Júnior JX, Ribeiro ÊAN, da Silva SAS, da Costa CDF, Alexandre-Moreira MS, Santos BVO (2011) Cardiovascular effects of two amides (piperine and piperdardine) isolated from piper tuberculatum JACQ. Emir J Food Agric, 265–274
Okwute SK, Egharevba HO (2013) Piperine-type amides: review of the chemical and biological characteristics. Int J Chem 5:99–122. https://doi.org/10.5539/ijc.v5n3p99
Article
CAS
Google Scholar
Booranasubkajorn S, Huabprasert S, Wattanarangsan J, Chotitham P, Jutasompakorn P, Laohapand T, Akarasereenont P, Tripatara P (2017) Vasculoprotective and vasodilatation effects of herbal formula (Sahatsatara) and piperine in spontaneously hypertensive rats. Phytomedicine 24:148–156. https://doi.org/10.1016/j.phymed.2016.11.013
Article
CAS
PubMed
Google Scholar
Chakraborty M, Bhattacharjee A, Kamath JV (2017) Cardioprotective effect of curcumin and piperine combination against cyclophosphamide-induced cardiotoxicity. Indian J Pharmacol 49:65–70. https://doi.org/10.4103/0253-7613.201015
Article
CAS
PubMed
PubMed Central
Google Scholar
Taqvi SIH, Shah AJ, Gilani AH (2008) Blood pressure lowering and vasomodulator effects of piperine. J Cardiovasc Pharmacol 52:452–458. https://doi.org/10.1097/FJC.0b013e31818d07c0
Article
CAS
PubMed
Google Scholar
Wang L, Palme V, Rotter S, Schilcher N, Cukaj M, Wang D, Ladurner A, Heiss EH, Stangl H, Dirsch VM, Atanasov AG (2017) Piperine inhibits ABCA1 degradation and promotes cholesterol efflux from THP-1-derived macrophages. Mol Nutr Food Res 61:1–31. https://doi.org/10.1002/mnfr.201500960
Article
CAS
Google Scholar
Biol S (1990) OF SUMMARY : was isolated from Piper nigrum Linn for the evaluation of anti-inflammatory activity in rats. Different acute and chronic experimental models like carrageenin-induced rat paw edema biochemical estimations were made to elucidate the underlyin, 95–100
Jaisin Y, Ratanachamnong P, Wongsawattkul O, Watthammawut A, Malaniyom K, Natewong S (2020) Antioxidant and anti-inflammatory effects of piperine on UV-B-irradiated human HaCaT keratinocyte cells. Life Sci. https://doi.org/10.1016/j.lfs.2020.118607
Article
PubMed
Google Scholar
Neyrinck AM, Alligier M, Memvanga PB, Névraumont E, Larondelle Y, Préat V, Cani PD, Delzenne NM (2013) Curcuma longa extract associated with white pepper lessens high fat diet-induced inflammation in subcutaneous adipose tissue. PLoS ONE 8:1–10. https://doi.org/10.1371/journal.pone.0081252
Article
Google Scholar
Dhargawe N, Mahakalkar S, Bhagyashree Mohod JPR (2018) Article in pharmacognosy research · October 2017. Pharmacognosy Res 10:24–30. https://doi.org/10.4103/pr.pr
Article
Google Scholar
Simanjuntak N, Levita J, Subarnas A (2020) Inclusion of biopiperine in the kappa-carrageenan complex might improve its bioaccessibility and in vivo anti-inflammatory activity in edema-induced wistar rats. J Appl Pharm Sci 10:39–43. https://doi.org/10.7324/JAPS.2020.10606
Article
CAS
Google Scholar
Ying X, Chen X, Cheng S, Shen Y, Peng L, Xu H (2013) Piperine inhibits IL-β induced expression of inflammatory mediators in human osteoarthritis chondrocyte. Int Immunopharmacol 17:293–299. https://doi.org/10.1016/j.intimp.2013.06.025
Article
CAS
PubMed
Google Scholar
Rathee D, Kamboj A, Sidhu S (2018) Augmentation of hepatoprotective potential of Aegle marmelos in combination with piperine in carbon tetrachloride model in wistar rats. Chem Cent J 12:1–13. https://doi.org/10.1186/s13065-018-0463-9
Article
CAS
Google Scholar
Abdel-daim MM, Sayed AA, Abdeen A, Aleya L, Ali D, Alkahtane AA, Alarifi S, Alkahtani S (2019) Piperine enhances the antioxidant and anti-inflammatory activities of thymoquinone against microcystin-LR-induced hepatotoxicity and neurotoxicity in mice
Pannu N, Bhatnagar A (2020) Combinatorial therapeutic effect of resveratrol and piperine on murine model of systemic lupus erythematosus. Inflammopharmacology 28:401–424. https://doi.org/10.1007/s10787-019-00662-w
Article
CAS
PubMed
Google Scholar
Zhai W, Zhang Z, Xu N, Guo Y, Qiu C, Li C, Deng G, Guo M (2016) Piperine plays an anti-inflammatory role in staphylococcus aureus endometritis by inhibiting activation of NF-κB and MAPK pathways in mice. Evid-Based Complement Altern Med 2016:1–10. https://doi.org/10.1155/2016/8597208
Article
Google Scholar
Chen X, Ge F, Liu J, Bao S, Chen Y, Li D, Li Y, Huang T, Chen X, Zhu Q, Lian Q, Ge RS (2018) Diverged effects of piperine on testicular development: stimulating leydig cell development but inhibiting spermatogenesis in rats. Front Pharmacol 9:1–13. https://doi.org/10.3389/fphar.2018.00244
Article
CAS
Google Scholar
Malini T, Manimaran RR, Arunakaran J, Aruldhas MM, Govindarajulu P (1999) Effects of piperine on testis of albino rats. J Ethnopharmacol 64:219–225. https://doi.org/10.1016/S0378-8741(98)00128-7
Article
CAS
PubMed
Google Scholar
D’Cruz SC, Vaithinathan S, Saradha B, Mathur PP (2008) Piperine activates testicular apoptosis in adult rats. J Biochem Mol Toxicol 22:382–388. https://doi.org/10.1002/jbt.20251
Article
CAS
PubMed
Google Scholar
D’Cruz SC, Mathur PP (2005) Effect of piperine on the epididymis of adult male rats. Asian J Androl 7:363–368. https://doi.org/10.1111/j.1745-7262.2005.00059.x
Article
CAS
PubMed
Google Scholar
Lakes JE, Richards CI, Flythe MD (2020) Inhibition of Bacteroidetes and Firmicutes by select phytochemicals. Anaerobe 61:102145. https://doi.org/10.1016/j.anaerobe.2019.102145
Article
CAS
PubMed
Google Scholar
Peterson CT, Vaughn AR, Sharma V, Chopra D, Mills PJ, Peterson SN, Sivamani RK (2018) Effects of turmeric and curcumin dietary supplementation on human gut microbiota: a double-blind, randomized, placebo-controlled pilot study. J Evid-Based Integr Med 23:1–8. https://doi.org/10.1177/2515690X18790725
Article
Google Scholar
Rama Raju KS, Taneja I, Singh SP, Tripathi A, Mishra DP, Hussain KM, Gayen JR, Singh SK, Wahajuddin M (2015) Simultaneous determination of centchroman and tamoxifen along with their metabolites in rat plasma using LC–MS/MS. 7: 967–979. doi:https://doi.org/10.4155/BIO.14.253
Guldiken B, Ozkan G, Catalkaya G, Ceylan FD, Ekin Yalcinkaya I, Capanoglu E (2018) Phytochemicals of herbs and spices: Health versus toxicological effects. Food Chem Toxicol 119:37–49. https://doi.org/10.1016/j.fct.2018.05.050
Article
CAS
PubMed
Google Scholar
Piyachaturawat P, Glinsukon T, Toskulkao C (1983) Acute and subacute toxicity of piperine in mice, rats and hamsters. Toxicol Lett 16:351–359. https://doi.org/10.1016/0378-4274(83)90198-4
Article
CAS
PubMed
Google Scholar
Chonpathompikunlert P, Yoshitomi T, Han J, Isoda H, Nagasaki Y (2011) The use of nitroxide radical-containing nanoparticles coupled with piperine to protect neuroblastoma SH-SY5Y cells from Aβ-induced oxidative stress. Biomaterials 32:8605–8612. https://doi.org/10.1016/j.biomaterials.2011.07.024
Article
CAS
PubMed
Google Scholar
Daware MB, Mujumdar AM, Ghaskadbi S (2000) Reproductive toxicity of piperine in Swiss albino mice. Planta Med 66:231–236. https://doi.org/10.1055/s-2000-8560
Article
CAS
PubMed
Google Scholar
Choudhary P, Chakdar H, Singh D, Selvaraj C, Singh SK, Kumar S, Saxena AK (2020) Computational studies reveal piperine, the predominant oleoresin of black pepper (Piper nigrum) as a potential inhibitor of SARS-CoV-2 (COVID-19). Curr Sci 119:1333–1342
Article
CAS
Google Scholar
Maurya VK, Kumar S, Prasad AK, Bhatt MLB, Saxena SK (2020) Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. VirusDisease 31:179–193. https://doi.org/10.1007/s13337-020-00598-8
Article
PubMed
PubMed Central
Google Scholar
Alagu Lakshmi S, Shafreen RMB, Priya A, Shunmugiah KP (2020) Ethnomedicines of Indian origin for combating COVID-19 infection by hampering the viral replication: using structure-based drug discovery approach. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1778537
Article
PubMed
PubMed Central
Google Scholar
Kumar G, Kumar D, Singh NP (2020) Therapeutic approach against 2019-nCoV by inhibition of ACE-2 receptor. Drug Res (Stuttg). https://doi.org/10.1055/a-1275-0228
Article
Google Scholar
Kumar S, Kashyap P, Chowdhury S, Kumar S, Panwar A, Kumar A (2020) Identification of phytochemicals as potential therapeutic agents that binds to Nsp15 protein target of coronavirus (SARS-CoV-2) that are capable of inhibiting virus replication. Phytomedicine. https://doi.org/10.1016/j.phymed.2020.153317
Article
PubMed
PubMed Central
Google Scholar
Heidari-Beni M, Moravejolahkami AR, Gorgian P, Askari G, Tarrahi MJ, Bahreini-Esfahani N (2020) Herbal formulation “turmeric extract, black pepper, and ginger” versus Naproxen for chronic knee osteoarthritis: a randomized, double-blind, controlled clinical trial. Phyther Res 34:2067–2073. https://doi.org/10.1002/ptr.6671
Article
CAS
Google Scholar
Bedada SK, Appani R, Boga PK (2017) Effect of piperine on the metabolism and pharmacokinetics of carbamazepine in healthy volunteers. Drug Res (Stuttg) 67:46–51. https://doi.org/10.1055/s-0042-118173
Article
CAS
Google Scholar
Bedada SK, Boga PK, Kotakonda HK (2017) Study on influence of piperine treatment on the pharmacokinetics of diclofenac in healthy volunteers. Xenobiotica 47:127–132. https://doi.org/10.3109/00498254.2016.1163752
Article
CAS
PubMed
Google Scholar
Cherniakov I, Izgelov D, Barasch D, Davidson E, Domb AJ, Hoffman A (2017) Piperine-pro-nanolipospheres as a novel oral delivery system of cannabinoids: pharmacokinetic evaluation in healthy volunteers in comparison to buccal spray administration. J Control Release 266:1–7. https://doi.org/10.1016/j.jconrel.2017.09.011
Article
CAS
PubMed
Google Scholar
Kasibhatta R, Naidu MUR (2007) Influence of piperine on the pharmacokinetics of nevirapine under fasting conditions: a randomised, crossover, placebo-controlled study. Drugs R D 8:383–391. https://doi.org/10.2165/00126839-200708060-00006
Article
CAS
PubMed
Google Scholar
Mirhafez SR, Farimani AR, Gholami A, Hooshmand E, Tavallaie S, Gh BFNM (2019) The effect of curcumin with piperine supplementation on pro-oxidant and antioxidant balance in patients with non-alcoholic fatty liver disease: a randomized, double-blind, placebo-controlled trial. Drug Metab Pers Ther 34:1–7. https://doi.org/10.1515/dmpt-2018-0040
Pattanaik S, Hota D, Prabhakar S, Kharbanda P, Pandhi P (2009) Pharmacokinetic interaction of single dose of piperine with steady-state carbamazepine in epilepsy patients. Phytother Res 23:1281–1286. https://doi.org/10.1002/ptr.2676
Article
CAS
PubMed
Google Scholar
Rofes L, Arreola V, Martin A, Clavé P (2014) Effect of oral piperine on the swallow response of patients with oropharyngeal dysphagia. J Gastroenterol 49:1517–1523. https://doi.org/10.1007/s00535-013-0920-0
Article
PubMed
Google Scholar
Bedada SK, Boga PK (2017) Effect of piperine on CYP2E1 enzyme activity of chlorzoxazone in healthy volunteers. Xenobiotica 47:1035–1041. https://doi.org/10.1080/00498254.2016.1241450
Article
CAS
PubMed
Google Scholar
Panahi Y, Alishiri GH, Parvin S, Sahebkar A (2016) Mitigation of systemic oxidative stress by curcuminoids in osteoarthritis: results of a randomized controlled trial. J Diet Suppl 13:209–220. https://doi.org/10.3109/19390211.2015.1008611
Article
CAS
PubMed
Google Scholar
Panahi Y, Khalili N, Sahebi E, Namazi S, Simental-Mendía LE, Majeed M, Sahebkar A (2018) Effects of curcuminoids plus piperine on glycemic, hepatic and inflammatory biomarkers in patients with type 2 diabetes mellitus: a randomized double-blind placebo-controlled trial. Drug Res (Stuttg) 68:403–409. https://doi.org/10.1055/s-0044-101752
Article
CAS
Google Scholar
Panahi Y, Valizadegan G, Ahamdi N, Ganjali S, Majeed M, Sahebkar A (2019) Curcuminoids plus piperine improve nonalcoholic fatty liver disease: a clinical trial. J Cell Biochem 120:15989–15996. https://doi.org/10.1002/jcb.28877
Article
CAS
PubMed
Google Scholar
Ferreira RC, Batista TM, Duarte SS, Silva DKF, Lisboa TMH, Cavalcanti RFP, Leite FC, Mangueira VM, de Sousa TKG, de Abrantes RA, da Trindade EO, de Athayde-Filho PF, Brandão MCR, de Medeiros KC P, Farias DF, Sobral MV (2020) A novel piperine analogue exerts in vivo antitumor effect by inducing oxidative, antiangiogenic and immunomodulatory actions. Biomed Pharmacother 128, 110247. https://doi.org/10.1016/j.biopha.2020.110247
Yang X, Ji J, Liu C, Zhou M, Li H, Ye S, Hu Q (2020) HJ22, a Novel derivative of piperine, Attenuates ibotenic acid-induced cognitive impairment, oxidativestress, apoptosis and inflammation via inhibiting the protein-protein interaction of Keap1-Nrf2. Int Immunopharmacol 83:106383. https://doi.org/10.1016/j.intimp.2020.106383
Article
CAS
PubMed
Google Scholar
Faas L, Venkatasamy R, Hider RC, Young AR, Soumyanath A (2008) In vivo evaluation of piperine and synthetic analogues as potential treatments for vitiligo using a sparsely pigmented mouse model. Br J Dermatol 158:941–950. https://doi.org/10.1111/j.1365-2133.2008.08464.x
Article
CAS
PubMed
Google Scholar
Santos J, Brito M, Ferreira R, Moura AP, Sousa T, Batista T, Mangueira V, Leite F, Cruz R, Vieira G, Lira B, Athayde-Filho P, Souza H, Costa N, Veras R, Barbosa-Filho JM, Magalhães H, Sobral M (2018) Th1-biased immunomodulation and in vivo antitumor effect of a novel piperine analogue. Int J Mol Sci 19:1–22. https://doi.org/10.3390/ijms19092594
Article
CAS
Google Scholar
Zazeri G, Povinelli APR, Le Duff CS, Tang B, Cornelio ML, Jones AM (2020) Synthesis and spectroscopic analysis of piperine- and piperlongumine-inspired natural product scaffolds and their molecular docking with IL-1β and NF-κB proteins. Molecules 25:1–17. https://doi.org/10.3390/molecules25122841
Article
CAS
Google Scholar
Kharbanda C, Alam MS, Hamid H, Javed K, Bano S, Ali Y, Dhulap A, Alam P, Pasha MAQ (2016) Novel piperine derivatives with antidiabetic effect as PPAR-γ agonists. Chem Biol Drug Des. https://doi.org/10.1111/cbdd.12760
Article
PubMed
Google Scholar
Kumar S, Arya P, Mukherjee C, Singh BK, Singh N, Parmar VS, Prasad AK, Ghosh B (2005) Novel aromatic ester from Piper longum and its analogues inhibit expression of cell adhesion molecules on endothelial cells. Biochemistry 44:15944–15952. https://doi.org/10.1021/bi050941u
Article
CAS
PubMed
Google Scholar
Kumar A, Khan IA, Koul S, Koul JL, Taneja SC, Ali I, Ali F, Sharma S, Mirza ZM, Kumar M, Sangwan PL, Gupta P, Thota N, Qazi GN (2008) Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus. J Antimicrob Chemother 61:1270–1276. https://doi.org/10.1093/jac/dkn088
Article
CAS
PubMed
Google Scholar
Wang L, Cai X, Shi M, Xue L, Kuang S, Xu R, Qi W, Li Y, Ma X, Zhang R, Hong F, Ye H, Chen L (2020) Identification and optimization of piperine analogues as neuroprotective agents for the treatment of Parkinson’s disease via the activation of Nrf2/keap1 pathway. Eur J Med Chem 199:1–21. https://doi.org/10.1016/j.ejmech.2020.112385
Article
CAS
Google Scholar
Luque de Castro MD, Priego-Capote F (2010) Soxhlet extraction: Past and present panacea. J Chromatogr A 1217:2383–2389. https://doi.org/10.1016/j.chroma.2009.11.027
Article
CAS
PubMed
Google Scholar
Zhang QW, Lin LG, Ye WC (2018) Techniques for extraction and isolation of natural products: a comprehensive review. Chinese Med (UK) 13:1–26. https://doi.org/10.1186/s13020-018-0177-x
Article
CAS
Google Scholar
Dutta S, Bhattacharjee P (2016) Modeling of supercritical carbon dioxide extraction of piperine from Malabar black pepper. Mater Today Proc 3:3238–3252. https://doi.org/10.1016/j.matpr.2016.10.005
Article
Google Scholar
Dutta S, Bhattacharjee P (2015) Enzyme-assisted supercritical carbon dioxide extraction of black pepper oleoresin for enhanced yield of piperine-rich extract. J Biosci Bioeng 120:17–23. https://doi.org/10.1016/j.jbiosc.2014.12.004
Article
CAS
PubMed
Google Scholar
Cao X, Ye X, Lu Y, Yu Y, Mo W (2009) Ionic liquid-based ultrasonic-assisted extraction of piperine from white pepper. Anal Chim Acta 640:47–51. https://doi.org/10.1016/j.aca.2009.03.029
Article
CAS
PubMed
Google Scholar
Gigliarelli G, Pagiotti R, Persia D, Marcotullio MC (2017) Optimisation of a Naviglio-assisted extraction followed by determination of piperine content in Piper longum extracts. Nat Prod Res 31:214–217. https://doi.org/10.1080/14786419.2016.1217209
Article
CAS
PubMed
Google Scholar
Naviglio D, Scarano P, Ciaravolo M, Gallo M (2019) Rapid solid-liquid dynamic extraction (RSLDE): a powerful and greener alternative to the latest solid-liquid extraction techniques. Foods 8:1–22. https://doi.org/10.3390/foods8070245
Article
CAS
Google Scholar
Gorgani L, Mohammadi M, Najafpour GD, Nikzad M (2017) Sequential microwave-ultrasound-assisted extraction for isolation of piperine from black pepper (Piper nigrum L.). Food Bioprocess Technol 10:2199–2207. https://doi.org/10.1007/s11947-017-1994-0
Article
CAS
Google Scholar
Shityakov S, Bigdelian E, Hussein AA, Hussain MB, Tripathi YC, Khan MU, Shariati MA (2019) Phytochemical and pharmacological attributes of piperine: a bioactive ingredient of black pepper. Eur J Med Chem 176:149–161. https://doi.org/10.1016/j.ejmech.2019.04.002
Article
CAS
PubMed
Google Scholar
Bano G, Raina RK, Zutshi U, Bedi KL, Johri RK, Sharma SC (1991) Effect of piperine on bioavailability and pharmacokinetics of propranolol and theophylline in healthy volunteers. Eur J Clin Pharmacol 41:615–617. https://doi.org/10.1007/BF00314996
Article
CAS
PubMed
Google Scholar
Di X, Wang X, Liu Y (2015) Effect of piperine on the bioavailability and pharmacokinetics of emodin in rats. J Pharm Biomed Anal 115:144–149. https://doi.org/10.1016/j.jpba.2015.06.027
Article
CAS
PubMed
Google Scholar
Feng X, Liu Y, Wang X, Di X (2014) Effects of piperine on the intestinal permeability and pharmacokinetics of linarin in rats. Molecules 19:5624–5633. https://doi.org/10.3390/molecules19055624
Article
CAS
PubMed
PubMed Central
Google Scholar
Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PSSR (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64:353–356. https://doi.org/10.1055/s-2006-957450
Article
CAS
PubMed
Google Scholar
Jin MJ, Han HK (2010) Effect of piperine, a major component of black pepper, on the intestinal absorption of fexofenadine and its implication on food-drug interaction. J Food Sci. https://doi.org/10.1111/j.1750-3841.2010.01542.x
Article
PubMed
Google Scholar
Itharat A, Kanokkangsadal P, Khemawoot P, Wanichsetakul P, Davies N (2020) Pharmacokinetics of piperine after oral administration of Sahastara remedy capsules in healthy volunteers. Res Pharm Sci 15:410–417. https://doi.org/10.4103/1735-5362.297843
Article
PubMed
PubMed Central
Google Scholar
Wen-xing WXP (2010) Pharmacokinetics of piperine capsules in healthy volunters. Cent South Pharm 8:513–516
Google Scholar
Ren T, Zuo Z (2019) Role of piperine in CNS diseases: pharmacodynamics, pharmacokinetics and drug interactions. Expert Opin Drug Metab Toxicol 15:849–867. https://doi.org/10.1080/17425255.2019.1672658
Article
CAS
PubMed
Google Scholar