Moncada S, Higgs A (2002) The L-arginine–nitric oxide pathway. New Engl J Med 329:2012. https://doi.org/10.1056/NEJM199312303292706
Article
Google Scholar
MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350. https://doi.org/10.1146/annurev.immunol.15.1.323
Article
CAS
PubMed
Google Scholar
Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97:8841–8848. https://doi.org/10.1073/pnas.97.16.8841
Article
CAS
PubMed
PubMed Central
Google Scholar
Palsson-McDermott EM, O’Neill LAJ (2004) Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113:153–162. https://doi.org/10.1111/j.1365-2567.2004.01976.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY et al (1996) Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 384:644–648. https://doi.org/10.1038/384644a0
Article
CAS
PubMed
Google Scholar
Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 31:986–1000. https://doi.org/10.1161/ATVBAHA.110.207449
Article
CAS
PubMed
PubMed Central
Google Scholar
Espirito Santo BLSd, Santana LF, Kato Junior WH, de Araújo FdO, Bogo D, Freitas KdC et al (2020) Medicinal potential of Garcinia species and their compounds. Molecules 25(19):4513. https://doi.org/10.3390/molecules25194513
Article
CAS
PubMed Central
Google Scholar
Parthasarathy U, Babu KN, Kumar RS, Ashis GR, Mohan S, Parthasarathy VA (2013) Diversity of Indian Garcinia: a medicinally important spice crop in India. Acta Hort 979(979):467–476
Article
Google Scholar
Parthasarathy U, Nandakishore OP (2014) Morphological characterisation of some important Indian Garcinia species. Dataset Pap Sci. https://doi.org/10.1155/2014/823705
Article
Google Scholar
Hay AEA, Mallet MC, Dumontet S, Litaudon V, Rondeau M, Richomme D (2004) Antioxidant xanthones from Garcinia vieillardii. J Nat Prod 67(4):707–709. https://doi.org/10.1021/np0304971
Article
CAS
PubMed
Google Scholar
Lim YK, Yoo SY, Jang YY, Lee BC, Lee DS, Kook JK (2019) Anti-inflammatory and in vitro bone formation effects of Garcinia mangostana L. and propolis extracts. Food Sci Biotechnol. 29(4):539–548. https://doi.org/10.1007/s10068-019-00697-3
Article
CAS
PubMed
PubMed Central
Google Scholar
Diaz-Carballo D, Seeber S, Strumberg D, Hilger RA (2003) Novel antitumoral compound isolated from Clusiarosea. Int J Clin Pharm 41(12):622–623. https://doi.org/10.5414/CPP41622
Article
CAS
Google Scholar
Merza J, Aumond MC, Rondeau D, Dumontet V, Le Ray AM, Seraphin D et al (2004) Prenylated xanthones and tocotrienols from Garcinia virgata. Phytochemistry 65(21):2915–2920. https://doi.org/10.1016/j.phytochem.2004.06.037
Article
CAS
PubMed
Google Scholar
Mundugaru R, Narayana SKK, Ballal SR, Thomas J, Rajakrishnan R (2016) Neuroprotective activity of Garcinia pedunculata roxb ex buch ham fruit extract against aluminium chloride induced neurotoxicity in mice. Indian J Pharm Educ Res. 50(3):435–441. https://doi.org/10.5530/ijper.50.3.17
Article
CAS
Google Scholar
Chen TH, Fu YS, Chen SP, Fuh YM, Chang C, Weng CF (2021) Garcinia linii extracts exert the mediation of anti-diabetic molecular targets on anti-hyperglycemia. Biomed Pharmacother 134:111151. https://doi.org/10.1016/j.biopha.2020.111151
Article
CAS
PubMed
Google Scholar
Abood WN, Bradosty SW, Shaikh FK, Salehene NA, Farghadani R, Aghag NFS et al (2020) Garcinia mangostana peel extracts exhibit hepatoprotective activity against thioacetamide-induced liver cirrhosis in rats. J Funct Foods 74:104200. https://doi.org/10.1016/j.jff.2020.104200
Article
CAS
Google Scholar
Demenciano SC, Silva MCBL, Alexandrino CAF, Junior WHK, Figueiredo PO, Garcez WS et al (2020) Antiproliferative activity and antioxidant potential of extracts of Garcinia gardneriana. Molecules 25(14):3201. https://doi.org/10.3390/molecules25143201
Article
CAS
PubMed Central
Google Scholar
Badmus JA, Adedosu OT, Adeleke EG, Akinboro KH, Odeyemi BI, Ayoola BI et al (2014) In vitro and in vivo biochemical evaluations of the methanolic leaf extract of Garcinia kola. Int Sch Res Notices 2014:391692. https://doi.org/10.1155/2014/391692
Article
PubMed
PubMed Central
Google Scholar
Khanum SA, Shashikanth S, Deepak AV (2004) Synthesis and anti-inflammatory activity of benzophenone analogues. Bioorg Chem 32(4):211–222. https://doi.org/10.1016/j.bioorg.2004.04.003
Article
CAS
PubMed
Google Scholar
Padhye S, Ahmad A, Oswal N, Sarkar FH (2009) Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. J Hematol Oncol 2:38. https://doi.org/10.1186/1756-8722-2-38
Article
CAS
PubMed
PubMed Central
Google Scholar
Baliga MS, Bhat HP, Pai RJ, Boloor R, Princy LP (2011) The chemistry and medicinal uses of the underutilized Indian fruit tree Garcinia indica Choisy (kokum): a review. Food Res Int 44(7):1790–1799
Article
CAS
Google Scholar
Heymsfield SB, Allison DB, Vasselli JR, Pietrobelli A, Greenfield D, Nunez C (1998) Garcinia cambogia (hydroxycitric acid) as a potential antiobesity agent: a randomized controlled trial. JAMA 280(18):1596–1600. https://doi.org/10.1001/jama.280.18.1596
Article
CAS
PubMed
Google Scholar
Hemshekhar M, Sunitha K, Sebastian Santhosh M, Devaraja S, Kemparaju K, Vishwanath BS et al (2011) An overview on genus Garcinia: phytochemical and therapeutical aspects. Phytochem Rev. 10:325–51. https://doi.org/10.1007/s11101-011-9207-3
Article
CAS
Google Scholar
Jayaprakash GK, Sakariah KK (2000) Determination of (-)-hydroxycitric acid in commercial samples of Garcinia cambogia extracts by liquid chromatography using ultraviolet detection. J Liq Chromatogr Relat Technol 23:915–923. https://doi.org/10.1081/JLC-100101498
Article
Google Scholar
Liu C, Ho PC, Wong FC, Sethi G, Wang LZ, Goh BC (2015) Garcinol: current status of its anti-oxidative, anti-inflammatory and anti-cancer effects. Cancer Lett. 362:8–14. https://doi.org/10.1016/j.canlet.2015.03.019
Article
CAS
PubMed
Google Scholar
Huang MT, Liu Y, Badmaev V, Ho CT (2008) Antiinflammatory and anticancer activities of Garcinol. Dietary Suppl 20:293–303. https://doi.org/10.1021/bk-2008-0987.ch020
Article
CAS
Google Scholar
Jia Y, Pang C, Zhao K, Jiang J, Zhang T, Peng J et al (2019) Garcinol suppresses IL-1β-induced chondrocyte inflammation and osteoarthritis via inhibition of the NF-κB signaling pathway. Inflammation 42:1754–1766. https://doi.org/10.1007/s10753-019-01037-7
Article
CAS
PubMed
Google Scholar
Jena BS, Jayaprakash GK, Sakariah KK (2000) Organic acids from leaves, fruits, and rinds of Garcinia cowa. J Agric Food Chem 50:3431–3434. https://doi.org/10.1021/jf011627j
Article
CAS
Google Scholar
Kim JE, Jeon SM, Park KH, Lee WS, Jeong TS, McGregor RA et al (2011) Does Glycine max leaves or Garcinia cambogia promote weight-loss or lower plasma cholesterol in overweight individuals: a randomized control trial. Nutr J. 10:94. https://doi.org/10.1186/1475-2891-10-94
Article
CAS
PubMed
PubMed Central
Google Scholar
Haller CA (2004). Weight reduction therapies: anorectants, thermogenics, and lipolytics. In: Principles of gender-specific medicine. 874–881
Amin KA, Kamel HH, Abd Eltawab MA (2011) Protective effect of Garcinia against renal oxidative stress and biomarkers induced by high fat and sucrose diet. Lipids Health Dis. 10:6. https://doi.org/10.1186/1476-511X-10-6
Article
CAS
PubMed
PubMed Central
Google Scholar
dos Reis SB, de Oliveira CC, Acedo SC, Miranda DD, Ribeiro ML, Pedrazzoli J et al (2009) Attenuation of colitis injury in rats using Garcinia cambogia extract. Phytother Res 23(3):324–329. https://doi.org/10.1002/ptr.2626
Article
CAS
PubMed
Google Scholar
Kalita A, Das M, Baro MR, Das B (2021) Exploring the role of Aquaporins (AQPs) in LPS induced systemic inflammation and the ameliorative effect of Garcinia in male Wistar rat. Inflammopharmacology. https://doi.org/10.1007/s10787-021-00832-9
Article
PubMed
Google Scholar
Young L, Sung J, Stacey G, Masters JR (2010) Detection of Mycoplasma in cell cultures. Nat Protoc. 5(5):924–934. https://doi.org/10.1038/nprot.2010.43
Article
CAS
Google Scholar
Uphoff CC, Drexler HG (2013) Detection of mycoplasma contaminations. Methods Mol Biol 946:1–13
Article
CAS
PubMed
Google Scholar
Parasramk MA, Gupta SV (2012) Synergistic effect of garcinol and curcumin on antiproliferative and apoptotic activity in pancreatic cancer cells. J Oncol 2012:709739. https://doi.org/10.1155/2012/709739
Article
CAS
Google Scholar
Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res. 35:43–46. https://doi.org/10.1093/nar/gkm234
Article
Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262
Article
CAS
PubMed
Google Scholar
Kubista M, Andrade J, Bengtsson M, Forootan A, Jonák J, Lind K, et al (2006). The real-time polymerase chain reaction. Mol Aspects Med. 2006; 27(2–3): 95–125
Molinspiration cheminformatics, Nova ulica, SK-900 26 Slovensky Grob, Slovak Republic, 2013, http://www.molinspiration.com.
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26. https://doi.org/10.1016/s0169-409x(00)00129-0
Article
CAS
PubMed
Google Scholar
CHEMSPIDER, http://www.chemspider.com/.
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS et al (2009) AutoDock4and AutoDock Tools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A et al (2015) PubChem substance and compound databases. Nucleic Acids Res. 44(D1):D1202–D1213. https://doi.org/10.1093/nar/gkv951
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Chemoinform 3:33. https://doi.org/10.1186/1758-2946-3-33
Article
CAS
Google Scholar
Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 30: Computed atlas of surface topography of proteins. Nucleic Acids Res. 46(1): 363–367
Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Prot Eng 8(2):127–134. https://doi.org/10.1093/protein/8.2.127
Article
CAS
Google Scholar
Tanaka T, Kohno H, Shimada R, Kagami S, Yamaguchi F, Kataoka S et al (2000) Prevention of colonic aberrant crypt foci by dietary feeding of garcinol in male F344 rats. Carcinogenesis 21:1183–1189
Article
CAS
PubMed
Google Scholar
Tsai ML, Chiou YS, Chiou LY, Ho CT, Pan MH (2014) Garcinol suppresses inflammation-associated colon carcinogenesis in mice. Mol Nutr Food Res. 58:1820–29
Article
CAS
PubMed
Google Scholar
Liao CH, Sang S, Liang YC, Ho CT, Lin JK (2004) Suppression of inducible nitric oxide synthase and cyclooxygenase-2 in downregulating nuclear factor-kappa B pathway by Garcinol. Mol Carcinog 41:140–149. https://doi.org/10.1002/mc.20050
Article
CAS
PubMed
Google Scholar
Bosca´L, Zeinia M, Traves´ PG, Hortelanoa S, (2005) Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate. Toxicology 208:249–258. https://doi.org/10.1016/j.tox.2004.11.035
Article
CAS
Google Scholar
Geller DA, Billiar TR (1998) Molecular biology of nitric oxide synthases. Cancer Metastasis Rev 17:7–23. https://doi.org/10.1023/a:1005940202801
Article
CAS
PubMed
Google Scholar
Stuehr DJ (1999) Mammalian nitric oxide synthases. Biochim Biophys Acta 1411:217–230. https://doi.org/10.1016/s0005-2728(99)00016-x
Article
CAS
PubMed
Google Scholar
Nathan CF (1987) Secretory products of macrophages. J Clin Invest 79:319–326. https://doi.org/10.1172/JCI112815
Article
CAS
PubMed
PubMed Central
Google Scholar
Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P (1993) Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA 90:7240–7244. https://doi.org/10.1073/pnas.90.15.7240
Article
CAS
PubMed
PubMed Central
Google Scholar
Swierkosz TA, Mitchell JA, Warner TD, Botting RM, Vane JR (1995) Co-induction of nitric oxide synthase and cyclo-oxygenase: interactions between nitric oxide and prostanoids. Br J Pharmacol 114:1335–1342. https://doi.org/10.1111/j.1476-5381.1995.tb13353.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang YC, Yang SF, Huang FM, Liu CM, Tai KW, Hsieh YS (2003) Proinflammatory cytokines induce cyclooxygenase-2 mRNA and protein expression in human pulp cell cultures. J Endod 29:201–204. https://doi.org/10.1097/00004770-200303000-00009
Article
PubMed
Google Scholar
Hesse AK, Dörger M, Kupatt C, Krombach F (2014) Proinflammatory role of inducible nitric oxide synthase in acute hyperoxic lung injury. Respir Res 5:11. https://doi.org/10.1186/1465-9921-5-11
Article
CAS
Google Scholar
Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J. 298(2):249–58. https://doi.org/10.1042/bj2980249
Article
CAS
PubMed
PubMed Central
Google Scholar
Nørregaard R, Kwon TH, Frøkiær J (2015) Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney. Kidney Res Clin Pract. 34(4):194–200. https://doi.org/10.1016/j.krcp.2015.10.004
Article
PubMed
PubMed Central
Google Scholar
Tang T, Scambler TE, Smallie T, Cunliffe HE, Ross EA, Rosner DR et al (2017) Macrophage responses to lipopolysaccharide are modulated by a feedback loop involving prostaglandinE2, dual specificity phosphatase 1 and tristetraprolin. Sci Rep. 7(1):4350. https://doi.org/10.1038/s41598-017-04100-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho YC, Cho S (2016) c-Jun N-terminal kinase-mediated anti-inflammatory effects of Garcinia subelliptica in macrophages. Mol Med Rep. 13(3):2293–2300. https://doi.org/10.3892/mmr.2016.4791
Article
CAS
PubMed
Google Scholar
Fujihara M, Muroi M, Tanamoto K, Suzuki T, Azuma H, Ikeda H (2003) Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: Roles of the receptor complex. Pharmacol Ther. 100(2):171–194. https://doi.org/10.1016/j.pharmthera.2003.08.003
Article
CAS
PubMed
Google Scholar
Schroder K, Sweet MJ, Hume DA (2006) Signal integration between IFNgamma and TLR signalling pathways in macrophages. Immunobiology. 211(6–8):511–524. https://doi.org/10.1016/j.imbio.2006.05.007
Article
CAS
PubMed
Google Scholar
Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK (2000) Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing toll-like receptors. J Immunol. 164(2):966–972. https://doi.org/10.4049/jimmunol.164.2.966
Article
CAS
PubMed
Google Scholar
Shi Q, Cao J, Fang L, Zhao H, Liu Z, Ran J et al (2014) Geniposide suppresses LPS-induced nitric oxide, PGE2 and inflammatory cytokine by downregulating NF-κB, MAPK and AP-1 signaling pathways in macrophages. Int Immunopharmacol. 20(2):298–306. https://doi.org/10.1016/j.intimp.2014.04.004
Article
CAS
PubMed
Google Scholar
Jang HL, El-Gamal MI, Choi HE, Choi HY, Lee KT, Oh CH (2014) Synthesis of tricyclic fused coumarin sulfonates and their inhibitory effects on LPS-induced nitric oxide and PGE2 productions in RAW 264.7 macrophages. Bioorg Med Chem Lett. 24(2):571–575. https://doi.org/10.1016/j.bmcl.2013.12.018
Article
CAS
PubMed
Google Scholar
Bowie A, O’Neill LAJ (2000) Nuclear factor-kB activation and innate immune response in microbial pathogen infection. Biochem Pharmacol 60:1109–1114. https://doi.org/10.1016/s0006-2952(00)00390-7
Article
Google Scholar
Herrera-Velit P, Knutson KL, Reiner NE (1997) Phosphatidylinositol 3-kinase-dependent activation of protein kinase C-zeta in bacterial lipopolysaccharide-treated human monocytes. J Biol Chem 272:16445–16452. https://doi.org/10.1074/jbc.272.26.16445
Article
CAS
PubMed
Google Scholar
Lien E, Chowi JC, Hawkinsi LD et al (2001) A novel synthetic acyclic lipid A-like agonist activates cells via the lipopolysaccharide/toll-like receptor 4 signaling pathway. J Biol Chem 276:1873–1880. https://doi.org/10.1074/jbc.M009040200
Article
CAS
PubMed
Google Scholar
Nick JA, Young SK, Brown KK et al (2000) Role of p38 mitogen activated protein kinase in a murine model of pulmonary inflammation. J Immunol 164:2151–2159. https://doi.org/10.4049/jimmunol.164.4.2151
Article
CAS
PubMed
Google Scholar
Chen BC, Chen YH, Lin WW (1999) Involvement of p38 mitogenactivated protein kinase in lipopolysaccharide-induced iNOS and COX-2 expression in J774 macrophages. Immuno 97:124–129. https://doi.org/10.1046/j.1365-2567.1999.00747.x
Article
CAS
Google Scholar
Carter AB, Knudtson KL, Monick MM, Hunninghake GW (1999). The p38 mitogen-activated protein kinase is required for NFkappaB-dependent gene expression The role of TATAbinding protein (TBP). J Biol Chem. 274:30858–30863.https://doi.org/10.1074/jbc.274.43.30858.
Karin M, Delhase M (2000) The I kappa B kinase (IKK) and NF-kappaB: Key elements of proinflammatory signalling. Semin Immunol. 12:85–98. https://doi.org/10.1006/smim.2000.0210
Article
CAS
PubMed
Google Scholar
Roman-Blas JA, Jimenez SA (2006) NF-κB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarth Cartilage 14:839–848. https://doi.org/10.1016/j.joca.2006.04.008
Article
CAS
Google Scholar
Clouatre DL, Preuss HG (2013) Hydroxycitric acid does not promote inflammation or liver toxicity. World J Gastroenterol 19:8160–8162. https://doi.org/10.3748/wjg.v19.i44.8160
Article
CAS
PubMed
PubMed Central
Google Scholar
Goudarzvand M, Afraei S, Yaslianifard S et al (2016) Hydroxycitric acid ameliorates inflammation and oxidative stress in mouse models of multiple sclerosis. Neural Regen Res 11:1610–1616. https://doi.org/10.4103/1673-5374.193240
Article
CAS
PubMed
PubMed Central
Google Scholar
Masullo M, Menegazzi M, Di Micco S, Beffy P, Bifulco G, Dal Bosco M et al (2014) Direct interaction of garcinol and related polyisoprenylated benzophenones of Garcinia cambogia fruits with the transcription factor STAT-1 as a likely mechanism of their inhibitory effect on cytokine signaling pathways. J Nat Prod. 77:543–549. https://doi.org/10.1021/np400804y
Article
CAS
PubMed
Google Scholar
Zhang MQ, Wilkinson B (2007) Drug discovery beyond the “rule-of-five.” Curr Opin Biotechnol 18(6):478–488. https://doi.org/10.1016/j.copbio.2007.10.005
Article
CAS
PubMed
Google Scholar
Thamaraiselvi L, Selvankumar T, Wesely EG, Nathan VK (2021) In-silico molecular docking analysis of some plant derived molecules for anti-inflammatory inhibitory activity. Curr Bot 12:22–27
Article
CAS
Google Scholar
Moreira DR, Uberti ACMG, Gomes ARQ, Ferreira MES, Santos RS, Green MD et al (2018) Inhibition of nitric oxide synthesis by dexamethasone2 increases survival rate in Plasmodium berghei-infected mice. In Press. https://doi.org/10.1101/497966
Article
Google Scholar
Herawati H, Oktanella Y, Anisa AK (2021) Molecular docking analysis of curcuminoids from Curcuma longa extract on iNOS as an immunomodulator candidate in broilers. Adv Anim Vet Sci. 9:519–524
Article
Google Scholar
Wijaya YT, Yulandi A, Gunawan AW (2020) In silico study of anthocyanin and ternatin flavonoids for the treatment of inflammation-related diseases using molecular docking analysis. Food Res. 4:780–785
Article
Google Scholar
Rowlinson SW, Kiefer JR, Prusakiewicz J, Pawlitz JL, Kozak KR, Kalgutkar AS et al (2003) A novel mechanism of cyclooxygenase-2 inhibition involving interactions with Ser-530 and Tyr385. J Biol Chem 278:45763–45769. https://doi.org/10.1074/jbc.M305481200
Article
CAS
PubMed
Google Scholar
Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK (2000) Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing toll-like receptors. J Immunol. 164:966–972. https://doi.org/10.4049/jimmunol.164.2.966
Article
CAS
PubMed
Google Scholar
Lin JK, Lin-Shiau SY (2001) Mechanism of cancer chemoprevention by Curcumin. Proc Natl Sci Counc Repub ChinaB 25:59–66
CAS
Google Scholar
Miladiyah I, Jumina J, Haryana SM, Mustofa M (2017) In silico molecular docking of xanthone derivative as cyclooxygenase-2 inhibitor agents. Int J Pharm Pharm Sci. 9:98–104
Article
CAS
Google Scholar
Gunalan G, Vijayalalakshmi K, Saraswathy A, Hopper W, Thangaraju T (2014) Anti-inflammatory activities of phytochemicals from Bauhinia variegata linn. Leaf: An in silico approach. JOCPR 6:334–348
Google Scholar
Piccagli L, Fabbri E, Borgatti M, Bezzerri V, Mancini I, Nicolis E et al (2008) Docking of molecules identified in bioactive medicinal plants extracts into the p50 NF-κB transcription factor: correlation with inhibition of NF-κB/DNA interactions and inhibitory effects on IL-8 gene expression. BMC Struct Biol 8:38. https://doi.org/10.1186/1472-6807-8-38
Article
CAS
PubMed
PubMed Central
Google Scholar
Llorens O, Perez JJ, Palomer A, Mauleon D (2002) Differential binding mode of diverse cyclooxygenase inhibitors. J Mol Graph Model 20(5):359–371. https://doi.org/10.1016/s1093-3263(01)00135-8
Article
CAS
PubMed
Google Scholar
Baul HS, Rajiniraja M (2018) Molecular docking studies of selected flavonoids on inducible nitric oxide synthase (iNOS) in Parkinson’s disease. Res J Pharm Technol 11(8):3685–3688
Article
Google Scholar
Boroumand N, Samarghandian S, Hashemy SI (2018) Immunomodulatory, anti-inflammatory, and antioxidant effects of Curcumin. J Herbmed Pharmacol. 27: 211–219. https://doi.org/10.15171/jhp.2018.33.
Kim DC (2018) Identification of quercetin as a potential anti neuroinflammatory agent using BV2 microglia cell system and in silico molecular docking technology. IJERT 11:1–10
Google Scholar