Abbasiliasi S, Tan JS, Ibrahim TAT, Kadkhodaei S, Ng HS, Vakhshiteh F, Rahim RA (2014) Primary recovery of a bacteriocin-like inhibitory substance derived from Pediococcus acidilactici Kp10 by an aqueous two-phase system. Food Chem 151:93–100. https://doi.org/10.1016/j.foodchem.2013.11.019
Article
CAS
PubMed
Google Scholar
Abdul Aziz NFH, Abbasiliasi S, Ng ZJ, Abu Zarin M, Oslan SN, Tan JS, Ariff AB (2020) Recovery of a bacteriocin-like inhibitory substance from lactobacillus bulgaricus FTDC 1211 using polyethylene-glycol impregnated amberlite XAD-4 resins system. Molecules 25(22):5332
Article
CAS
Google Scholar
Abriouel H, Valdivia E, Martınez-Bueno M, Maqueda M, Gálvez A (2003) A simple method for semi-preparative-scale production and recovery of enterocin AS-48 derived from Enterococcus faecalis subsp. liquefaciens A-48–32. J Microbiol Methods 55(3):599–605. https://doi.org/10.1016/S0167-7012(03)00202-1
Article
CAS
PubMed
Google Scholar
Allen HK, Trachsel J, Looft T, Casey TA (2014) Finding alternatives to antibiotics. Ann N Y Acad Sci 1323(1):91–100. https://doi.org/10.1111/nyas.12468
Article
PubMed
Google Scholar
Aouadhi C, Simonin H, Prévost H, de Lamballerie M, Maaroufi A, Mejri S (2013) Inactivation of Bacillus sporothermodurans LTIS27 spores by high hydrostatic pressure and moderate heat studied by response surface methodology. LWT-Food Sci Technol 50(1):50–56. https://doi.org/10.1016/j.lwt.2012.07.015
Article
CAS
Google Scholar
Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3(2):113–126. https://doi.org/10.1016/S1466-8564(02)00012-7
Article
CAS
Google Scholar
Arqués J, Rodríguez E, Gaya P, Medina M, Nunez M (2005) Effect of combinations of high-pressure treatment and bacteriocin-producing lactic acid bacteria on the survival of Listeria monocytogenes in raw milk cheese. Int Dairy J 15(6–9):893–900. https://doi.org/10.1016/j.idairyj.2004.07.020
Article
CAS
Google Scholar
Aziz NFHA, Abbasiliasi S, Ng HS, Phapugrangkul P, Bakar MHA, Tam YJ, Tan JS (2017) Purification of β-mannanase derived from Bacillus subtilis ATCC 11774 using ionic liquid as adjuvant in aqueous two-phase system. J Chromatogr B 1055:104–112. https://doi.org/10.1016/j.jchromb.2017.04.029
Article
CAS
Google Scholar
Bali V, Panesar PS, Bera MB (2014) Potential of immobilization technology in bacteriocin production and antimicrobial packaging. Food Rev Intl 30(3):244–263. https://doi.org/10.1080/87559129.2014.924138
Article
CAS
Google Scholar
Barbosa AAT, de Melo MR, da Silva CMR, Jain S, Dolabella SS (2021) Nisin resistance in Gram-positive bacteria and approaches to circumvent resistance for successful therapeutic use. Crit Rev Microbiol 47(3):376–385. https://doi.org/10.1080/1040841X.2021.1893264
Article
CAS
PubMed
Google Scholar
Bari M, Ukuku D, Kawasaki T, Inatsu Y, Isshiki K, Kawamoto S (2005) Combined efficacy of nisin and pediocin with sodium lactate, citric acid, phytic acid, and potassium sorbate and EDTA in reducing the Listeria monocytogenes population of inoculated fresh-cut produce. J Food Prot 68(7):1381–1387. https://doi.org/10.4315/0362-028X-68.7.1381
Article
CAS
PubMed
Google Scholar
Batiha GE-S, Hussein DE, Algammal AM, George TT, Jeandet P, Al-Snafi AE, Thorat ND (2021) Application of natural antimicrobials in food preservation: recent views. Food Control. https://doi.org/10.1016/j.foodcont.2021.108066
Article
Google Scholar
Bauer R, Chikindas M, Dicks L (2005) Purification, partial amino acid sequence and mode of action of pediocin PD-1, a bacteriocin produced by Pediococcus damnosus NCFB 1832. Int J Food Microbiol 101(1):17–27. https://doi.org/10.1016/j.ijfoodmicro.2004.10.040
Article
CAS
PubMed
Google Scholar
Beaulieu L, Aomari H, Groleau D, Subirade M (2006) An improved and simplified method for the large-scale purification of pediocin PA-1 produced by Pediococcus acidilactici. Biotechnol Appl Biochem 43(2):77–84. https://doi.org/10.1042/BA20050041
Article
CAS
PubMed
Google Scholar
Behrens HM, Six A, Walker D, Kleanthous C (2017) The therapeutic potential of bacteriocins as protein antibiotics. Emerg Top Life Sci 1(1):65–74. https://doi.org/10.1042/ETLS20160016
Article
CAS
PubMed
PubMed Central
Google Scholar
Belguesmia Y, Spano G, Drider D (2021) Potentiating effects of leaderless enterocin DD14 in combination with methicillin on clinical methicillin-resistant Staphylococcus aureus S1 strain. Microbiol Res 252:126864. https://doi.org/10.1016/j.micres.2021.126864
Article
CAS
PubMed
Google Scholar
Black E, Linton M, McCall R, Curran W, Fitzgerald G, Kelly A, Patterson M (2008) The combined effects of high pressure and nisin on germination and inactivation of Bacillus spores in milk. J Appl Microbiol 105(1):78–87. https://doi.org/10.1111/j.1365-2672.2007.03722.x
Article
CAS
PubMed
Google Scholar
Black EP, Kelly AL, Fitzgerald GF (2005) The combined effect of high pressure and nisin on inactivation of microorganisms in milk. Innov Food Sci Emerg Technol 6(3):286–292. https://doi.org/10.1016/j.ifset.2005.04.005
Article
CAS
Google Scholar
Borzenkov V, Surovtsev V, Dyatlov I (2014) Obtaining bacteriocins by chromatographic methods. Adv Biosci Biotechnol. https://doi.org/10.4236/abb.2014.55054
Article
Google Scholar
Bouttefroy A, Millière J-B (2000) Nisin–curvaticin 13 combinations for avoiding the regrowth of bacteriocin resistant cells of Listeria monocytogenes ATCC 15313. Int J Food Microbiol 62(1–2):65–75. https://doi.org/10.1016/S0168-1605(00)00372-X
Article
CAS
PubMed
Google Scholar
Branen JK, Davidson PM (2004) Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. Int J Food Microbiol 90(1):63–74. https://doi.org/10.1016/S0168-1605(03)00172-7
Article
CAS
PubMed
Google Scholar
Burgess RR (2009) Protein precipitation techniques. Methods Enzymol 463:331–342. https://doi.org/10.1016/S0076-6879(09)63020-2
Article
CAS
PubMed
Google Scholar
Burianek L, Yousef A (2000) Solvent extraction of bacteriocins from liquid cultures. Lett Appl Microbiol 31(3):193–197. https://doi.org/10.1046/j.1365-2672.2000.00802.x
Article
CAS
PubMed
Google Scholar
Capellas M, Mor-Mur M, Gervilla R, Yuste J, Guamis B (2000) Effect of high pressure combined with mild heat or nisin on inoculated bacteria and mesophiles of goat’s milk fresh cheese. Food Microbiol 17(6):633–641. https://doi.org/10.1006/fmic.2000.0359
Article
CAS
Google Scholar
Casco M, Jagus R, Agüero M, Fernandez M (2022) Ultrasound and Its combination with natural antimicrobials: effects on shelf life and quality stability of a fruit and vegetable smoothie. Food Bioprocess Technol, 1–16
Cebrián R, Arévalo S, Rubiño S, Arias-Santiago S, Rojo MD, Montalbán-López M, Maqueda M (2018) Control of Propionibacterium acnes by natural antimicrobial substances: role of the bacteriocin AS-48 and lysozyme. Sci Rep 8(1):1–11
Article
Google Scholar
Chalón MC, Acuña L, Morero RD, Minahk CJ, Bellomio A (2012) Membrane-active bacteriocins to control Salmonella in foods: are they the definite hurdle? Food Res Int 45(2):735–744. https://doi.org/10.1016/j.foodres.2011.08.024
Article
CAS
Google Scholar
Chang S-H, Chen Y-J, Tseng H-J, Hsiao H-I, Chai H-J, Shang K-C, Tsai G-J (2021) Applications of Nisin and EDTA in food packaging for improving fabricated chitosan-polylactate plastic film performance and fish fillet preservation. Membranes 11(11):852
Article
CAS
Google Scholar
Chavez-Santoscoy A, Benavides J, Vermaas W, Rito-Palomares M (2010) Application of aqueous two-phase systems for the potential extractive fermentation of cyanobacterial products. Chem Eng Technol Ind Chem Plant Equip Process Eng Biotechnol 33(1):177–182. https://doi.org/10.1002/ceat.200900286
Article
CAS
Google Scholar
Cheigh C-I, Kook M-C, Kim S-B, Hong Y-H, Pyun Y-R (2004) Simple one-step purification of nisin Z from unclarified culture broth of Lactococcus lactis subsp. lactis A164 using expanded bed ion exchange chromatography. Biotechnol Lett 26(17):1341–1345. https://doi.org/10.1023/B:BILE.0000045630.29494.45
Article
CAS
PubMed
Google Scholar
Chung D-M, Kim KE, Jeong S-Y, Park C-S, Ahn K-H, Kim DH, Koh HB (2011) Rapid concentration of some bacteriocin-like compounds using an organic solvent. Food Sci Biotechnol 20(5):1457–1459. https://doi.org/10.1007/s10068-011-0201-8
Article
CAS
Google Scholar
Churklam W, Chaturongakul S, Ngamwongsatit B, Aunpad R (2020) The mechanisms of action of carvacrol and its synergism with nisin against Listeria monocytogenes on sliced bologna sausage. Food Control 108:106864
Article
CAS
Google Scholar
Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CG (2007) Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci 104(18):7617–7621
Article
CAS
Google Scholar
Cox CR, Coburn PS, Gilmore MS (2005) Enterococcal cytolysin: a novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells. Curr Protein Pept Sci 6(1):77–84. https://doi.org/10.2174/1389203053027557
Article
CAS
PubMed
Google Scholar
da Silva MA, de Araujo AP, de Souza Ferreira J, Kieckbusch TG (2016) Inactivation of Bacillus subtilis and Geobacillus stearothermophilus inoculated over metal surfaces using supercritical CO2 process and nisin. J Supercrit Fluids 109:87–94. https://doi.org/10.1016/j.supflu.2015.11.013
Article
CAS
Google Scholar
da Silva Malheiros P, Daroit DJ, da Silveira NP, Brandelli A (2010) Effect of nanovesicle-encapsulated nisin on growth of Listeria monocytogenes in milk. Food Microbiol 27(1):175–178. https://doi.org/10.1016/j.fm.2009.09.013
Article
CAS
PubMed
Google Scholar
da Silva Sabo S, Lopes AM, de Carvalho Santos-Ebinuma V, de Oliveira Rangel-Yagui C, de Souza Oliveira RP (2018) Bacteriocin partitioning from a clarified fermentation broth of Lactobacillus plantarum ST16Pa in aqueous two-phase systems with sodium sulfate and choline-based salts as additives. Process Biochem 66:212–221. https://doi.org/10.1016/j.procbio.2017.11.018
Article
CAS
Google Scholar
Dabour N, Zihler A, Kheadr E, Lacroix C, Fliss I (2009) In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting Listeria monocytogenes. Int J Food Microbiol 133(3):225–233. https://doi.org/10.1016/j.ijfoodmicro.2009.05.005
Article
CAS
PubMed
Google Scholar
Darbandi A, Asadi A, MahdizadeAri M, Ohadi E, Talebi M, HalajZadeh M, Kakanj M (2021) Bacteriocins: properties and potential use as antimicrobials. J Clin Lab Anal, e24093. https://doi.org/10.1002/jcla.24093
De Corato U (2020) Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: a comprehensive critical review from the traditional technologies into the most promising advancements. Crit Rev Food Sci Nutr 60(6):940–975. https://doi.org/10.1080/10408398.2018.1553025
Article
CAS
PubMed
Google Scholar
Delves-Broughton J, Weber G (2011) Nisin, natamycin and other commercial fermentates used in food biopreservation. In: Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation, pp 63–99. Elsevier BV
Divsalar E, Tajik H, Moradi M, Forough M, Lotfi M, Kuswandi B (2018) Characterization of cellulosic paper coated with chitosan-zinc oxide nanocomposite containing nisin and its application in packaging of UF cheese. Int J Biol Macromol 109:1311–1318
Article
CAS
Google Scholar
Du R, Ping W, Ge J (2022) Purification, characterization and mechanism of action of enterocin HDX-2, a novel class IIa bacteriocin produced by Enterococcus faecium HDX-2. LWT 153:112451
Article
CAS
Google Scholar
Dündar H, Atakay M, Çelikbıçak Ö, Salih B, Bozoğlu F (2015) Comparison of two methods for purification of enterocin B, a bacteriocin produced by Enterococcus faecium W3. Prep Biochem Biotechnol 45(8):796–809. https://doi.org/10.1080/10826068.2014.958165
Article
CAS
PubMed
Google Scholar
Elayaraja S, Annamalai N, Mayavu P, Balasubramanian T (2014) Production, purification and characterization of bacteriocin from Lactobacillus murinus AU06 and its broad antibacterial spectrum. Asian Pac J Trop Biomed 4:S305–S311. https://doi.org/10.12980/APJTB.4.2014C537
Article
PubMed
PubMed Central
Google Scholar
Ercolini D, La Storia A, Villani F, Mauriello G (2006) Effect of a bacteriocin-activated polythene film on Listeria monocytogenes as evaluated by viable staining and epifluorescence microscopy. J Appl Microbiol 100(4):765–772. https://doi.org/10.1111/j.1365-2672.2006.02825.x
Article
CAS
PubMed
Google Scholar
Fernández L, Delgado S, Herrero H, Maldonado A, Rodriguez JM (2008) The bacteriocin nisin, an effective agent for the treatment of staphylococcal mastitis during lactation. J Hum Lact 24(3):311–316. https://doi.org/10.1177/0890334408317435
Article
PubMed
Google Scholar
Floriano B, Ruiz-Barba JL, Jiménez-Díaz R (1998) Purification and genetic characterization of enterocin I from Enterococcus faecium 6T1a, a novel antilisterial plasmid-encoded bacteriocin which does not belong to the pediocin family of bacteriocins. Appl Environ Microbiol 64(12):4883–4890. https://doi.org/10.1128/AEM.64.12.4883-4890.1998
Article
CAS
PubMed
PubMed Central
Google Scholar
Freitas PA, Silva RR, de Oliveira TV, Soares RR, Soares NF (2020) Biodegradable film development by nisin Z addition into hydroxypropylmethylcellulose matrix for mozzarella cheese preservation. Int J Food Stud 9(2)
Gao Y-L, Ju X-R (2008) Exploiting the combined effects of high pressure and moderate heat with nisin on inactivation of Clostridium botulinum spores. J Microbiol Methods 72(1):20–28. https://doi.org/10.1016/j.mimet.2007.11.003
Article
CAS
PubMed
Google Scholar
Gao Y, Qiu W, Wu D, Fu Q (2011) Assessment of Clostridium perfringens spore response to high hydrostatic pressure and heat with nisin. Appl Biochem Biotechnol 164(7):1083–1095. https://doi.org/10.1007/s12010-011-9196-0
Article
CAS
PubMed
Google Scholar
García A, Iturmendi N, Maté JI, Fernández-García T (2022) Combined effect of nisin addition and high pressure processing on the stability of liquid micellar casein concentrates. Int Dairy J, 105361
Gaussier H, Morency H, Lavoie MC, Subirade M (2002) Replacement of trifluoroacetic acid with HCl in the hydrophobic purification steps of pediocin PA-1: a structural effect. Appl Environ Microbiol 68(10):4803–4808. https://doi.org/10.1128/AEM.68.10.4803-4808.2002
Article
CAS
PubMed
PubMed Central
Google Scholar
Goh HF, Philip K (2015) Purification and characterization of bacteriocin produced by Weissella confusa A3 of dairy origin. PLoS ONE 10(10):e0140434. https://doi.org/10.1371/journal.pone.0140434
Article
CAS
PubMed
PubMed Central
Google Scholar
Grilo AL, Raquel Aires-Barros M, Azevedo AM (2016) Partitioning in aqueous two-phase systems: fundamentals, applications and trends. Sep Purif Rev 45(1):68–80. https://doi.org/10.1080/15422119.2014.983128
Article
Google Scholar
Guerra NP, Macias CL, Agrasar AT, Castro L (2005) Development of a bioactive packaging cellophane using Nisaplin® as biopreservative agent. Lett Appl Microbiol 40(2):106–110. https://doi.org/10.1111/j.1472-765X.2004.01649.x
Article
CAS
PubMed
Google Scholar
Gupta A, Tiwari SK, Netrebov V, Chikindas ML (2016) Biochemical properties and mechanism of action of enterocin LD3 purified from Enterococcus hirae LD3. Probiot Antimicrob Proteins 8(3):161–169. https://doi.org/10.1007/s12602-016-9217-y
Article
CAS
Google Scholar
Guyonnet D, Fremaux C, Cenatiempo Y, Berjeaud J (2000) Method for rapid purification of class IIa bacteriocins and comparison of their activities. Appl Environ Microbiol 66(4):1744–1748. https://doi.org/10.1128/AEM.66.4.1744-1748.2000
Article
CAS
PubMed
PubMed Central
Google Scholar
Hager JV, Rawles SD, Xiong YL, Newman MC, Thompson KR, Webster CD (2019) Listeria monocytogenes is inhibited on fillets of cold-smoked sunshine bass, Morone chrysops× Morone saxatilis, with an edible corn zein-based coating incorporated with lemongrass essential oil or nisin. J World Aquaculture Soc 50(3):575–592
Article
CAS
Google Scholar
Håkansson J, Ringstad L, Umerska A, Johansson J, Andersson T, Boge L, Björn C (2019) Characterization of the in vitro, ex vivo, and in vivo efficacy of the antimicrobial peptide DPK-060 used for topical treatment. Front Cell Infect Microbiol 9:174. https://doi.org/10.3389/fcimb.2019.00174
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanlin MB, Kalchayanand N, Ray P, Ray B (1993) Bacteriocins of lactic acid bacteria in combination have greater antibacterial activity. J Food Prot 56(3):252–255. https://doi.org/10.4315/0362-028X-56.3.252
Article
CAS
PubMed
Google Scholar
Hanny ELL, Mustopa AZ, Budiarti S, Darusman HS, Ningrum RA (2019) Efficacy, toxicity study and antioxidant properties of plantaricin E and F recombinants against enteropathogenic Escherichia coli K1. 1 (EPEC K1. 1). Mol Biol Rep 46(6):6501–6512. https://doi.org/10.1007/s11033-019-05096-9
Article
CAS
PubMed
Google Scholar
Hassan M, Kjos M, Nes I, Diep D, Lotfipour F (2012) Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol 113(4):723–736. https://doi.org/10.1111/j.1365-2672.2012.05338.x
Article
CAS
PubMed
Google Scholar
Heidari Z, Ghasemi MF, Modiri L (2022) Antimicrobial activity of bacteriocin produced by a new Latilactobacillus curvatus sp LAB-3H isolated from traditional yogurt. Arch Microbiol 204(1):1–12
Article
Google Scholar
Hussain MA, Dawson CO (2013) Economic impact of food safety outbreaks on food businesses. Foods 2(4):585–589. https://doi.org/10.3390/foods2040585
Article
PubMed
PubMed Central
Google Scholar
Hwanhlem N, Ivanova T, Haertlé T, Jaffrès E, Dousset X (2017) Inhibition of food-spoilage and foodborne pathogenic bacteria by a nisin Z-producing Lactococcus lactis subsp. lactis KT2W2L. LWT-Food Sci Technol 82:170–175. https://doi.org/10.1016/j.lwt.2017.04.052
Article
CAS
Google Scholar
Ibarra-Sánchez LA, Van Tassell ML, Miller MJ (2018) Antimicrobial behavior of phage endolysin PlyP100 and its synergy with nisin to control Listeria monocytogenes in Queso Fresco. Food Microbiol 72:128–134
Article
Google Scholar
Iqbal M, Tao Y, Xie S, Zhu Y, Chen D, Wang X, Shabbir MAB (2016) Aqueous two-phase system (ATPS): an overview and advances in its applications. Biol Proced Online 18(1):1–18. https://doi.org/10.1186/s12575-016-0048-8
Article
CAS
Google Scholar
Jamaluddin N, Ariff AB, Wong FWF (2019) Purification of a bacteriocin-like inhibitory substance derived from pediococcus acidilactici Kp10 by an aqueous micellar two-phase system. Biotechnol Progress 35(1):e2719
Article
Google Scholar
Jawan R, Abbasiliasi S, Tan JS, Halim M, Mustafa S, Lee BH, Ariff AB (2021) Extractive fermentation for recovery of bacteriocin-like inhibitory substances derived from lactococcus lactis Gh1 using PEG2000/Dextran T500 aqueous two-phase system. Fermentation 7(4):257. https://doi.org/10.3390/fermentation7040257
Article
CAS
Google Scholar
Jia F, Wang J, Peng J, Zhao P, Kong Z, Wang K, Wang R (2017) D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP. Acta Biochim Biophys Sin 49(10):916–925. https://doi.org/10.1093/abbs/gmx091
Article
CAS
PubMed
Google Scholar
Jiménez-Díaz R, Rios-Sanchez R, Desmazeaud M, Ruiz-Barba JL, Piard J-C (1993) Plantaricins S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Appl Environ Microbiol 59(5):1416–1424. https://doi.org/10.1128/aem.59.5.1416-1424.1993
Article
PubMed
PubMed Central
Google Scholar
Johnson EM, Jung DY-G, Jin DY-Y, Jayabalan DR, Yang DSH, Suh JW (2018) Bacteriocins as food preservatives: challenges and emerging horizons. Crit Rev Food Sci Nutr 58(16):2743–2767. https://doi.org/10.1080/10408398.2017.1340870
Article
CAS
PubMed
Google Scholar
Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12(1–3):39–85. https://doi.org/10.1111/j.1574-6976.1993.tb00012.x
Article
CAS
PubMed
Google Scholar
Kmiha S, Aouadhi C, Aziza K, Bejaoui A, Maaroufi A (2021) Comparison of synergistic effect of nisin and monolaurin on the inactivation of three heat resistant spores studied by design of experiments in milk. J Food Qual. https://doi.org/10.1155/2021/9977646
Article
Google Scholar
Kmiha S, Modugno C, Aouadhi C, Simonin H, Mejri S, Perrier-Cornet J-M, Maaroufi A (2021) Inhibitory effect of high hydrostatic pressure, nisin, and moderate heating on the inactivation of Paenibacillus sp. and Terribacillus aidingensis spores isolated from UHT milk. High Pressure Res 41(3):328–340
Article
CAS
Google Scholar
Kumariya R, Garsa AK, Rajput Y, Sood S, Akhtar N, Patel S (2019) Bacteriocins: classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb Pathog 128:171–177. https://doi.org/10.1016/j.micpath.2019.01.002
Article
CAS
PubMed
Google Scholar
Lauková A, Strompfová V, Skřivanová V, Volek Z, Jindřichová E, Marounek M (2006) Bacteriocin-producing strain of Enterococcus faecium EK 13 with probiotic character and its application in the digestive tract of rabbits. Biologia 61(6):779–782. https://doi.org/10.2478/s11756-006-0191-9
Article
Google Scholar
Lee CH, An DS, Park HJ, Lee DS (2003) Wide-spectrum antimicrobial packaging materials incorporating nisin and chitosan in the coating. Packag Technol Sci Int J 16(3):99–106. https://doi.org/10.1002/pts.617
Article
CAS
Google Scholar
Lee CH, Park HJ, Lee DS (2004) Influence of antimicrobial packaging on kinetics of spoilage microbial growth in milk and orange juice. J Food Eng 65(4):527–531. https://doi.org/10.1016/j.jfoodeng.2004.02.016
Article
Google Scholar
Lee SY, Jin HH (2008) Inhibitory activity of natural antimicrobial compounds alone or in combination with nisin against Enterobacter sakazakii. Lett Appl Microbiol 47(4):315–321. https://doi.org/10.1111/j.1472-765X.2008.02432.x
Article
CAS
PubMed
Google Scholar
Lei S, Zhao R, Sun J, Ran J, Ruan X, Zhu Y (2020) Partial purification and characterization of a broad-spectrum bacteriocin produced by a Lactobacillus plantarum zrx03 isolated from infant’s feces. Food Sci Nutr 8(5):2214–2222. https://doi.org/10.1002/fsn3.1428
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C, Bai J, Li W, Cai Z, Ouyang F (2001) Optimization of conditions for bacteriocin extraction in PEG/salt aqueous two-phase systems using statistical experimental designs. Biotechnol Prog 17(2):366–368. https://doi.org/10.1021/bp000167w
Article
CAS
PubMed
Google Scholar
Li C, Ouyang F, Bai J (2000) Extractive cultivation of Lactococcus lactis using a polyethylene glycol/MgSO4· 7H2O aqueous two-phase system to produce nisin. Biotech Lett 22(10):843–847. https://doi.org/10.1023/A:1005634626801
Article
CAS
Google Scholar
Li Y, Liu T, Liu Y, Tan Z, Ju Y, Yang Y, Dong W (2019) Antimicrobial activity, membrane interaction and stability of the D-amino acid substituted analogs of antimicrobial peptide W3R6. J Photochem Photobiol, B 200:111645. https://doi.org/10.1016/j.jphotobiol.2019.111645
Article
CAS
Google Scholar
Lopresti F, Botta L, La Carrubba V, Di Pasquale L, Settanni L, Gaglio R (2021) Combining carvacrol and nisin in biodegradable films for antibacterial packaging applications. Int J Biol Macromol 193:117–126
Article
CAS
Google Scholar
Lu J, Xu H, Xia J, Ma J, Xu J, Li Y, Feng J (2020) D-and unnatural amino acid substituted antimicrobial peptides with improved proteolytic resistance and their proteolytic degradation characteristics. Front Microbiol. https://doi.org/10.3389/fmicb.2020.563030
Article
PubMed
PubMed Central
Google Scholar
Mahlapuu M, Björn C, Ekblom J (2020) Antimicrobial peptides as therapeutic agents: opportunities and challenges. Crit Rev Biotechnol 40(7):978–992. https://doi.org/10.1080/07388551.2020.1796576
Article
CAS
PubMed
Google Scholar
Martín-Escolano R, Cebrián R, Martín-Escolano J, Rosales MJ, Maqueda M, Sánchez-Moreno M, Marín C (2019) Insights into Chagas treatment based on the potential of bacteriocin AS-48. Int J Parasitol Drugs Drug Resist 10:1–8
Article
Google Scholar
Marvdashti LM, Yavarmanesh M, Koocheki A (2019) In vitro release study of nisin from active polyvinyl alcohol-Alyssum homolocarpum seed gum films at different temperatures. Polymer Testing 79:106032
Article
Google Scholar
Mauriello G, De Luca E, La Storia A, Villani F, Ercolini D (2005) Antimicrobial activity of a nisin-activated plastic film for food packaging. Lett Appl Microbiol 41(6):464–469. https://doi.org/10.1111/j.1472-765X.2005.01796.x
Article
CAS
PubMed
Google Scholar
Meena S, Mehla J, Kumar R, Sood S (2016) Common mechanism of cross-resistance development in pathogenic bacteria bacillus cereus against alamethicin and pediocin involves alteration in lipid composition. Curr Microbiol 73(4):534–541. https://doi.org/10.1007/s00284-016-1090-0
Article
CAS
PubMed
Google Scholar
Merlich AH (2017) Purification of bacteriocin from Enterococcus italicus onu547 by reversed phase-high performance liquid chromatography. Paper presented at the International conference of young scientists "Modern problems of microbiology and biotechnology", Odesa, Ukraine
Millette M, Cornut G, Dupont C, Shareck F, Archambault D, Lacroix M (2008) Capacity of human nisin-and pediocin-producing lactic acid bacteria to reduce intestinal colonization by vancomycin-resistant enterococci. Appl Environ Microbiol 74(7):1997–2003. https://doi.org/10.1128/AEM.02150-07
Article
CAS
PubMed
PubMed Central
Google Scholar
Millette M, Le Tien C, Smoragiewicz W, Lacroix M (2007) Inhibition of Staphylococcus aureus on beef by nisin-containing modified alginate films and beads. Food Control 18(7):878–884. https://doi.org/10.1016/j.foodcont.2006.05.003
Article
CAS
Google Scholar
Murdock C, Cleveland J, Matthews K, Chikindas ML (2007) The synergistic effect of nisin and lactoferrin on the inhibition of Listeria monocytogenes and Escherichia coli O157: H7. Lett Appl Microbiol 44(3):255–261. https://doi.org/10.1111/j.1472-765X.2006.02076.x
Article
CAS
PubMed
Google Scholar
Neville B (1996) Reversed-phase chromatography of proteins. In: Protein purification protocols, pp 277–292, Springer
Ng ZJ, Zarin MA, Lee CK, Phapugrangkul P, Tan JS (2020) Isolation and characterization of Enterococcus faecium DSM 20477 with ability to secrete antimicrobial substance for the inhibition of oral pathogen Streptococcus mutans UKMCC 1019. Arch Oral Biol 110:104617. https://doi.org/10.1016/j.archoralbio.2019.104617
Article
CAS
PubMed
Google Scholar
Ng ZJ, Zarin MA, Lee CK, Tan JS (2020) Application of bacteriocins in food preservation and infectious disease treatment for humans and livestock: a review. RSC Adv 10(64):38937–38964. https://doi.org/10.1039/D0RA06161A
Article
CAS
Google Scholar
Norhana MW, Poole SE, Deeth HC, Dykes GA (2012) Effects of nisin, EDTA and salts of organic acids on Listeria monocytogenes, Salmonella and native microflora on fresh vacuum packaged shrimps stored at 4 C. Food Microbiol 31(1):43–50. https://doi.org/10.1016/j.fm.2012.01.007
Article
CAS
Google Scholar
O’Bryan CA, Sostrin ML, Nannapaneni R, Ricke SC, Crandall PG, Johnson MG (2009) Sensitivity of Listeria monocytogenes Scott A to nisin and diacetyl after starvation in sodium phosphate buffered saline. J Food Sci 74(9):493–498. https://doi.org/10.1111/j.1750-3841.2009.01340.x
Article
CAS
Google Scholar
O’Shea EF, Cotter PD, Ross RP, Hill C (2013) Strategies to improve the bacteriocin protection provided by lactic acid bacteria. Curr Opin Biotechnol 24(2):130–134. https://doi.org/10.1016/j.copbio.2012.12.003
Article
CAS
Google Scholar
Ogihara H, Yatuzuka M, Horie N, Furukawa S, Yamasaki M (2009) Synergistic effect of high hydrostatic pressure treatment and food additives on the inactivation of Salmonella enteritidis. Food Control 20(11):963–966. https://doi.org/10.1016/j.foodcont.2008.11.004
Article
CAS
Google Scholar
Omardien S, Brul S, Zaat SA (2016) Antimicrobial activity of cationic antimicrobial peptides against gram-positives: current progress made in understanding the mode of action and the response of bacteria. Front Cell Dev Biol 4:111. https://doi.org/10.3389/fcell.2016.00111
Article
PubMed
PubMed Central
Google Scholar
Oner B, Meral R, Ceylan Z (2021) Determination of some quality indices of rainbow trout fillets treated with nisin-loaded polyvinylalcohol-based nanofiber and packed with polyethylene package. LWT 149:111854
Article
CAS
Google Scholar
Oner ME (2020) Effect of high-pressure processing and nisin on microbial inactivation and quality of avocado dressing. Trans ASABE 63(4):1099–1107
Article
Google Scholar
Oner ME (2020) The effect of high-pressure processing or thermosonication in combination with nisin on microbial inactivation and quality of green juice. J Food Process Preserv 44(10):e14830
Article
CAS
Google Scholar
Özdemir FN, Buzrul S, Özdemir C, Akçelik N, Akçelik M (2022) Determination of an effective agent combination using nisin against Salmonella biofilm. Arch Microbiol 204(3):1–11
Article
Google Scholar
Pang M, Cao L, Cao L, She Y, Wang H (2019) Properties of nisin incorporated ZrO2/poly (vinyl alcohol)-wheat gluten antimicrobial barrier films. CyTA-J Food 17(1):400–407
Article
CAS
Google Scholar
Pei J, Li X, Han H, Tao Y (2018) Purification and characterization of plantaricin SLG1, a novel bacteriocin produced by Lb. plantarum isolated from yak cheese. Food Control 84:111–117
Article
CAS
Google Scholar
Pereira JF, Freire MG, Coutinho JA (2020) Aqueous two-phase systems: Towards novel and more disruptive applications. Fluid Phase Equilib 505:112341. https://doi.org/10.1016/j.fluid.2019.112341
Article
CAS
Google Scholar
Perez RH, Zendo T, Sonomoto K (2014) Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 13(1):1–13. https://doi.org/10.1186/1475-2859-13-S1-S3
Article
Google Scholar
Phillips C (1999) The effect of citric acid, lactic acid, sodium citrate and sodium lactate, alone and in combination with nisin, on the growth of Arcobacter butzleri. Lett Appl Microbiol 29(6):424–428. https://doi.org/10.1046/j.1472-765X.1999.00668.x
Article
CAS
PubMed
Google Scholar
Phong WN, Show PL, Chow YH, Ling TC (2018) Recovery of biotechnological products using aqueous two phase systems. J Biosci Bioeng 126(3):273–281. https://doi.org/10.1016/j.jbiosc.2018.03.005
Article
CAS
PubMed
Google Scholar
Pingitore EV, Salvucci E, Sesma F, Nader-Macias M (2007) Different strategies for purification of antimicrobial peptides from lactic acid bacteria (LAB). Commun Curr Res Educ Top Trends Appl Microbiol 1:557–568
Google Scholar
Pokhrel PR, Toniazzo T, Boulet C, Oner ME, Sablani SS, Tang J, Barbosa-Cánovas GV (2019) Inactivation of Listeria innocua and Escherichia coli in carrot juice by combining high pressure processing, nisin, and mild thermal treatments. Innov Food Sci Emerg Technol 54:93–102
Article
CAS
Google Scholar
Prudêncio CV, Dos Santos MT, Vanetti MCD (2015) Strategies for the use of bacteriocins in Gram-negative bacteria: relevance in food microbiology. J Food Sci Technol 52(9):5408–5417. https://doi.org/10.1007/s13197-014-1666-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiao X, Du R, Wang Y, Han Y, Zhou Z (2020) Purification, characterization and mode of action of enterocin, a novel bacteriocin produced by Enterococcus faecium TJUQ1. Int J Biol Macromol 144:151–159. https://doi.org/10.1016/j.ijbiomac.2019.12.090
Article
CAS
PubMed
Google Scholar
Raja S, Murty VR, Thivaharan V, Rajasekar V, Ramesh V (2011) Aqueous two phase systems for the recovery of biomolecules–a review. Sci Technol 1(1):7–16. https://doi.org/10.5923/j.scit.20110101.02
Article
Google Scholar
Rao L, Wang Y, Chen F, Liao X (2016) The synergistic effect of high pressure CO2 and nisin on inactivation of Bacillus subtilis spores in aqueous solutions. Front Microbiol 7:1507. https://doi.org/10.3389/fmicb.2016.01507
Article
PubMed
PubMed Central
Google Scholar
Rasheed HA, Tuoheti T, Zhang Y, Azi F, Tekliye M, Dong M (2020) Purification and partial characterization of a novel bacteriocin produced by bacteriocinogenic Lactobacillus fermentum BZ532 isolated from Chinese fermented cereal beverage (Bozai). LWT 124:109113
Article
Google Scholar
Rea MC, Clayton E, O’Connor PM, Shanahan F, Kiely B, Ross RP, Hill C (2007) Antimicrobial activity of lacticin 3147 against clinical Clostridium difficile strains. J Med Microbiol 56(7):940–946. https://doi.org/10.1099/jmm.0.47085-0
Article
CAS
PubMed
Google Scholar
Riedl W, Raiser T (2008) Membrane-supported extraction of biomolecules with aqueous two-phase systems. Desalination 224(1–3):160–167. https://doi.org/10.1016/j.desal.2007.02.088
Article
CAS
Google Scholar
Rito-Palomares M (2004) Practical application of aqueous two-phase partition to process development for the recovery of biological products. J Chromatogr B 807(1):3–11. https://doi.org/10.1016/j.jchromb.2004.01.008
Article
CAS
Google Scholar
Robards K, Ryan D (2021) Principles and practice of modern chromatographic methods, 2nd edn. Academic Press, Cambridge
Google Scholar
Roshanak S, Shahidi F, Yazdi FT, Javadmanesh A, Movaffagh J (2020) Evaluation of antimicrobial activity of Buforin I and Nisin and the synergistic effect of their combination as a novel antimicrobial preservative. J Food Prot 83(11):2018–2025
Article
CAS
Google Scholar
Rumjuankiat K, Perez RH, Pilasombut K, Keawsompong S, Zendo T, Sonomoto K, Nitisinprasert S (2015) Purification and characterization of a novel plantaricin, KL-1Y, from Lactobacillus plantarum KL-1. World J Microbiol Biotechnol 31(6):983–994. https://doi.org/10.1007/s11274-015-1851-0
Article
CAS
PubMed
Google Scholar
Sahoo TK, Jena PK, Prajapati B, Gehlot L, Patel AK, Seshadri S (2017) In vivo assessment of immunogenicity and toxicity of the bacteriocin TSU4 in BALB/c mice. Probiot Antimicrob Proteins 9(3):345–354. https://doi.org/10.1007/s12602-016-9249-3
Article
CAS
Google Scholar
Santos JC, Sousa RC, Otoni CG, Moraes AR, Souza VG, Medeiros EA, Soares NF (2018) Nisin and other antimicrobial peptides: Production, mechanisms of action, and application in active food packaging. Innov Food Sci Emerg Technol 48:179–194
Article
CAS
Google Scholar
Scannell A, Hill C, Ross R, Marx S, Hartmeier W, Arendt E (2000) Continuous production of lacticin 3147 and nisin using cells immobilized in calcium alginate. J Appl Microbiol 89(4):573–579. https://doi.org/10.1046/j.1365-2672.2000.01149.x
Article
CAS
PubMed
Google Scholar
Scopes, R. K. (1993). Protein purification: principles and practice: Springer-Verlag.
Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101(3):514–525. https://doi.org/10.1111/j.1365-2672.2005.02736.x
Article
CAS
PubMed
Google Scholar
Sharma N, Gautam N (2008) Antibacterial activity and characterization of bacteriocin of Bacillus mycoides isolated from whey. Indian J Biotechnol 7(1):117–121
CAS
Google Scholar
Sidek NLM, Tan JS, Abbasiliasi S, Wong FWF, Mustafa S, Ariff AB (2016) Aqueous two-phase flotation for primary recovery of bacteriocin-like inhibitory substance (BLIS) from Pediococcus acidilactici Kp10. J Chromatogr B 1027:81–87. https://doi.org/10.1016/j.jchromb.2016.05.024
Article
CAS
Google Scholar
Sivarooban T, Hettiarachchy N, Johnson M (2007) Inhibition of Listeria monocytogenes using nisin with grape seed extract on turkey frankfurters stored at 4 and 10 C. J Food Prot 70(4):1017–1020. https://doi.org/10.4315/0362-028X-70.4.1017
Article
CAS
PubMed
Google Scholar
Smith MK, Draper LA, Hazelhoff P-J, Cotter PD, Ross RP, Hill C (2016) A bioengineered nisin derivative, M21A, in combination with food grade additives eradicates biofilms of Listeria monocytogenes. Front Microbiol 7:1939. https://doi.org/10.3389/fmicb.2016.01939
Article
PubMed
PubMed Central
Google Scholar
Sokołowska B, Skąpska S, Fonberg-Broczek M, Niezgoda J, Chotkiewicz M, Dekowska A, Rzoska S (2012) The combined effect of high pressure and nisin or lysozyme on the inactivation of Alicyclobacillus acidoterrestris spores in apple juice. High Pressure Res 32(1):119–127. https://doi.org/10.1080/08957959.2012.664642
Article
CAS
Google Scholar
Song D-F, Zhu M-Y, Gu Q (2014) Purification and characterization of plantaricin ZJ5, a new bacteriocin produced by Lactobacillus plantarum ZJ5. PLoS ONE 9(8):e105549. https://doi.org/10.1371/journal.pone.0105549
Article
CAS
PubMed
PubMed Central
Google Scholar
Stern N, Svetoch E, Eruslanov B, Perelygin V, Mitsevich E, Mitsevich I, Seal B (2006) Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrob Agents Chemother 50(9):3111–3116. https://doi.org/10.1128/AAC.00259-06
Article
CAS
PubMed
PubMed Central
Google Scholar
Sung S-Y, Sin LT, Tee T-T, Bee S-T, Rahmat A, Rahman W, Vikhraman M (2013) Antimicrobial agents for food packaging applications. Trends Food Sci Technol 33(2):110–123. https://doi.org/10.1016/j.tifs.2013.08.001
Article
CAS
Google Scholar
Tan JS, Abbasiliasi S, Lalung J, Tam YJ, Murugan P, Lee CK (2021) Bioseparation of phycocyanin from Phormidium tergestinum using an aqueous two-phase system. Prep Biochem Biotechnol 51(3):260–266. https://doi.org/10.1080/10826068.2020.1808793
Article
CAS
PubMed
Google Scholar
Tan SY, Tatsumura Y (2015) Alexander Fleming (1881–1955): discoverer of penicillin. Singapore Med J 56(7):366. https://doi.org/10.11622/smedj.2015105
Article
PubMed
PubMed Central
Google Scholar
Tang HW, Phapugrangkul P, Fauzi HM, Tan JS (2022) Lactic Acid bacteria bacteriocin, an antimicrobial peptide effective against multidrug resistance: a comprehensive review. Int J Pept Res Ther 28(1):1–14. https://doi.org/10.1007/s10989-021-10317-6
Article
CAS
Google Scholar
Tiwari SK, Srivastava S (2008) Purification and characterization of plantaricin LR14: a novel bacteriocin produced by Lactobacillus plantarum LR/14. Appl Microbiol Biotechnol 79(5):759–767. https://doi.org/10.1007/s00253-008-1482-6
Article
CAS
PubMed
Google Scholar
Todorov SD, Vaz-Velho M, Gibbs P (2004) Comparison of two methods for purification of plantaricin ST31, a bacteriocin produced by Lactobacillus plantarum ST31. Braz J Microbiol 35(1–2):157–160. https://doi.org/10.1590/S1517-83822004000100026
Article
CAS
Google Scholar
Torres MD, Sothiselvam S, Lu TK, de la Fuente-Nunez C (2019) Peptide design principles for antimicrobial applications. J Mol Biol 431(18):3547–3567. https://doi.org/10.1016/j.jmb.2018.12.015
Article
CAS
PubMed
Google Scholar
Uteng M, Hauge HH, Brondz I, Nissen-Meyer J, Fimland G (2002) Rapid two-step procedure for large-scale purification of pediocin-like bacteriocins and other cationic antimicrobial peptides from complex culture medium. Appl Environ Microbiol 68(2):952–956. https://doi.org/10.1128/AEM.68.2.952-956.2002
Article
CAS
PubMed
PubMed Central
Google Scholar
Verdi MC, Melian C, Castellano P, Vignolo G, Blanco Massani M (2020) Synergistic antimicrobial effect of lactocin AL 705 and nisin combined with organic acid salts against Listeria innocua 7 in broth and a hard cheese. Int J Food Sci Technol 55(1):267–275
Article
CAS
Google Scholar
Wang H, Guo L, Liu L, Han B, Niu X (2021) Composite chitosan films prepared using nisin and Perilla frutescense essential oil and their use to extend strawberry shelf life. Food Bioscience 41:101037
Article
CAS
Google Scholar
Wannun P, Piwat S, Teanpaisan R (2014) Purification and characterization of bacteriocin produced by oral Lactobacillus paracasei SD1. Anaerobe 27:17–21. https://doi.org/10.1016/j.anaerobe.2014.03.001
Article
CAS
PubMed
Google Scholar
Wannun P, Piwat S, Teanpaisan R (2016) Purification, characterization, and optimum conditions of fermencin SD11, a bacteriocin produced by human orally Lactobacillus fermentum SD11. Appl Biochem Biotechnol 179(4):572–582. https://doi.org/10.1007/s12010-016-2014-y
Article
CAS
PubMed
Google Scholar
Wyrwa J, Barska A (2017) Innovations in the food packaging market: Active packaging. Eur Food Res Technol 243(10):1681–1692. https://doi.org/10.1007/s00217-017-2878-2
Article
CAS
Google Scholar
Xiraphi N, Georgalaki M, Van Driessche G, Devreese B, Van Beeumen J, Tsakalidou E, Drosinos EH (2006) Purification and characterization of curvaticin L442, a bacteriocin produced by Lactobacillus curvatus L442. Antonie Van Leeuwenhoek 89(1):19–26. https://doi.org/10.1007/s10482-005-9004-3
Article
CAS
PubMed
Google Scholar
Yasir M, Dutta D, Willcox MD (2019) Mode of action of the antimicrobial peptide Mel4 is independent of Staphylococcus aureus cell membrane permeability. PLoS ONE 14(7):e0215703. https://doi.org/10.1371/journal.pone.0215703
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin X, Heeney D, Srisengfa Y, Golomb B, Griffey S, Marco M (2018) Bacteriocin biosynthesis contributes to the anti-inflammatory capacities of probiotic Lactobacillus plantarum. Benef Microbes 9(2):333–344
Article
CAS
Google Scholar
Yoon J-H, Jeong D-Y, Lee S-B, Choi S, Jeong M-I, Lee S-Y, Kim S-R (2021) Decontamination of Listeria monocytogenes in king oyster mushrooms (Pleurotus eryngii) by combined treatments with organic acids, nisin, and ultrasound. LWT 144:111207
Article
CAS
Google Scholar
Yüksel FN, Buzrul S, Akçelik M, Akçelik N (2018) Inhibition and eradication of Salmonella Typhimurium biofilm using P22 bacteriophage EDTA and nisin. Biofouling 34(9):1046–1054
Article
Google Scholar
Zainodini N, Hassanshahi G, Hajizadeh M, Falahati-Pour SK, Mahmoodi M, Mirzaei MR (2018) Nisin induces cytotoxicity and apoptosis in human asterocytoma cell line (SW1088). Asian Pac J Cancer Prevent APJCP 19(8):2217
CAS
Google Scholar
Zhang J, Li Y, Yang X, Liu X, Hong H, Luo Y (2021) Effects of oregano essential oil and nisin on the shelf life of modified atmosphere packed grass carp (Ctenopharyngodon idellus). LWT 147:111609
Article
CAS
Google Scholar
Zhao X, Chen L, Zhao L, He Y, Yang H (2020) Antimicrobial kinetics of nisin and grape seed extract against inoculated Listeria monocytogenes on cooked shrimps: Survival and residual effects. Food Control 115:107278
Article
CAS
Google Scholar
Zhu Y, Zhou Q, Li P, Gu Q (2021) Purification, characterization, and mode of action of Paracin 54, a novel bacteriocin against Staphylococci. Appl Microbiol Biotechnol 105(18):6735–6748. https://doi.org/10.1007/s00253-021-11505-6
Article
CAS
PubMed
Google Scholar